Kirstin E Bett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1417864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classification and Characterization of Species within the Genus Lens Using Genotyping-by-Sequencing (GBS). PLoS ONE, 2015, 10, e0122025.	2.5	135
2	Mineral Micronutrient Content of Cultivars of Field Pea, Chickpea, Common Bean, and Lentil Grown in Saskatchewan, Canada. Crop Science, 2014, 54, 1698-1708.	1.8	117
3	Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics, 2013, 14, 192.	2.8	115
4	Genetic Diversity of Cultivated Lentil (Lens culinaris Medik.) and Its Relation to the World's Agro-ecological Zones. Frontiers in Plant Science, 2016, 7, 1093.	3.6	110
5	Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics, 2014, 15, 708.	2.8	98

6 Marker–Trait Association Analysis of Iron and Zinc Concentration in Lentil (<i>Lens culinaris</i>) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

7	QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides. Scientific Reports, 2017, 7, 3231.	3.3	89
8	Changes in Polyphenols of the Seed Coat during the After-Darkening Process in Pinto Beans (Phaseolus vulgarisL.). Journal of Agricultural and Food Chemistry, 2005, 53, 7777-7782.	5.2	82
9	Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. Journal of Food Composition and Analysis, 2015, 42, 134-140.	3.9	77
10	White seed color in common bean (<i>Phaseolus vulgaris</i>) results from convergent evolution in the <i>P</i> (<i>pigment</i>) gene. New Phytologist, 2018, 219, 1112-1123.	7.3	77
11	Gene-based SNP discovery and genetic mapping in pea. Theoretical and Applied Genetics, 2014, 127, 2225-2241.	3.6	74
12	Quantitative Trait Loci Analysis of Seed Quality Characteristics in Lentil using Single Nucleotide Polymorphism Markers. Plant Genome, 2013, 6, plantgenome2013.05.0012.	2.8	68
13	Capturing variation in <i>Lens</i> (Fabaceae): Development and utility of an exome capture array for lentil. Applications in Plant Sciences, 2018, 6, e01165.	2.1	54
14	Tripal v1.1: a standards-based toolkit for construction of online genetic and genomic databases. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat075.	3.0	52
15	Mobilizing Crop Biodiversity. Molecular Plant, 2020, 13, 1341-1344.	8.3	50
16	Successful Introgression of Abiotic Stress Tolerance from Wild Tepary Bean to Common Bean. Crop Science, 2017, 57, 1160-1171.	1.8	46
17	Single Nucleotide Polymorphism Markers Associated with Seed Quality Characteristics of Cultivated Lentil. Plant Genome, 2018, 11, 170051.	2.8	45
18	Characterization of seed coat post harvest darkening in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2011, 123, 1467-1472.	3.6	43

KIRSTIN E BETT

#	Article	IF	CITATIONS
19	The tepary bean genome provides insight into evolution and domestication under heat stress. Nature Communications, 2021, 12, 2638.	12.8	43
20	Slow Darkening in Pinto Bean (<i>Phaseolus vulgaris</i> L.) Seed Coats Is Controlled by a Single Major Gene. Crop Science, 2008, 48, 189-193.	1.8	38
21	Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea. Frontiers in Plant Science, 2014, 5, 676.	3.6	38
22	Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics, 2016, 17, 239.	2.8	38
23	Genetic analysis and genome mapping in Raphanus. Genome, 2003, 46, 423-430.	2.0	37
24	Genetics and Biochemistry of Zero-Tannin Lentils. PLoS ONE, 2016, 11, e0164624.	2.5	35
25	An Accelerated Postharvest Seedâ€Coat Darkening Protocol for Pinto Beans Grown across Different Environments. Crop Science, 2007, 47, 694-700.	1.8	34
26	KnowPulse: A Web-Resource Focused on Diversity Data for Pulse Crop Improvement. Frontiers in Plant Science, 2019, 10, 965.	3.6	34
27	Polyphenol Oxidase Activity and Differential Accumulation of Polyphenolics in Seed Coats of Pinto Bean (Phaseolus vulgaris L.) Characterize Postharvest Color Changes. Journal of Agricultural and Food Chemistry, 2008, 56, 7049-7056.	5.2	33
28	Genomic selection for lentil breeding: Empirical evidence. Plant Genome, 2020, 13, e20002.	2.8	32
29	The Chado Natural Diversity module: a new generic database schema for large-scale phenotyping and genotyping data. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar051-bar051.	3.0	30
30	The INCREASE project: Intelligent Collections of foodâ€legume genetic resources for European agrofood systems. Plant Journal, 2021, 108, 646-660.	5.7	29
31	Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil (<i>Lens culinaris</i> Medik.). Plants People Planet, 2021, 3, 171-181.	3.3	26
32	Defense responses of lentil (Lens culinaris) genotypes carrying non-allelic ascochyta blight resistance genes to Ascochyta lentis infection. PLoS ONE, 2018, 13, e0204124.	2.5	25
33	A genome-wide identification and comparative analysis of the lentil MLO genes. PLoS ONE, 2018, 13, e0194945.	2.5	25
34	Selection for Lodging Resistance in Early Generations of Field Pea by Molecular Markers. Crop Science, 2006, 46, 321-329.	1.8	24
35	Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica, 2015, 202, 189-197.	1.2	24
36	Genotypic abundance of carotenoids and polyphenolics in the hull of field pea (<i>Pisum sativum</i>) Tj ETQqC	0 0 rgBT /	Overlock 10 T

36

3

KIRSTIN E BETT

#	Article	IF	CITATIONS
37	The BELT and phenoSEED platforms: shape and colour phenotyping of seed samples. Plant Methods, 2020, 16, 49.	4.3	23
38	Tripal v3: an ontology-based toolkit for construction of FAIR biological community databases. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	22
39	QTL mapping of lentil anthracnose (Colletotrichum lentis) resistance from Lens ervoides accession IG 72815 in an interspecific RIL population. Euphytica, 2021, 217, 1.	1.2	21
40	Genetic Mapping of Milling Quality Traits in Lentil (<i>Lens culinaris</i> Medik.). Plant Genome, 2018, 11, 170092.	2.8	20
41	Flowering and Growth Responses of Cultivated Lentil and Wild Lens Germplasm toward the Differences in Red to Far-Red Ratio and Photosynthetically Active Radiation. Frontiers in Plant Science, 2017, 8, 386.	3.6	19
42	Interference of Condensed Tannin in Lignin Analyses of Dry Bean and Forage Crops. Journal of Agricultural and Food Chemistry, 2008, 56, 9797-9802.	5.2	18
43	Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Wellâ€Represented Collections. Current Protocols, 2021, 1, e134.	2.9	18
44	Mapping and Genetic Characterization of Loci Controlling the Restoration of Male Fertility in Ogura CMS Radish. Molecular Breeding, 2004, 13, 125-133.	2.1	16
45	Slow darkening of pinto bean seed coat is associated with significant metabolite and transcript differences related to proanthocyanidin biosynthesis. BMC Genomics, 2018, 19, 260.	2.8	16
46	Differential Accumulation of Polyphenolics in Black Bean Genotypes Grown in Four Environments. Journal of Agricultural and Food Chemistry, 2010, 58, 7001-7006.	5.2	15
47	Automatic Detection and Segmentation of Lentil Crop Breeding Plots From Multi-Spectral Images Captured by UAV-Mounted Camera. , 2019, , .		13
48	Postharvest seed coat darkening in pinto bean (<i>Phaseolus vulgaris</i>) is regulated by <i>P^{sd}</i> , an allele of the basic helixâ€loopâ€helix transcription factor <i>P</i> . Plants People Planet, 2020, 2, 663-677.	3.3	13
49	Genetic and gene expression analysis of flowering time regulation by light quality in lentil. Annals of Botany, 2021, 128, 481-496.	2.9	12
50	Genetic diversity and GWAS of agronomic traits using an ICARDA lentil (<i>Lens culinaris</i> Medik.) Reference Plus collection. Plant Genetic Resources: Characterisation and Utilisation, 2021, 19, 279-288.	0.8	12
51	Generation and validation of genetic markers for the selection of carioca dry bean genotypes with the slow-darkening seed coat trait. Euphytica, 2019, 215, 1.	1.2	11
52	Reduced response diversity does not negatively impact wheat climate resilience. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10623-10624.	7.1	11
53	Rapid regeneration of Phaseolus angustissimus and P. vulgaris from very young zygotic embryos. Plant Cell, Tissue and Organ Culture, 2005, 83, 67-74.	2.3	9
54	ldentification of anthracnose race 1 resistance loci in lentil by integrating linkage mapping and genomeâ€wide association study. Plant Genome, 2021, 14, e20131.	2.8	8

KIRSTIN E BETT

#	Article	IF	CITATIONS
55	Genetic analysis of early phenology in lentil identifies distinct loci controlling component traits. Journal of Experimental Botany, 2022, 73, 3963-3977.	4.8	8
56	Interaction of quantitative trait loci for resistance to common bacterial blight and pathogen isolates in Phaseolus vulgaris L Molecular Breeding, 2017, 37, 1.	2.1	7
57	Gene expression profiles of seed coats and biochemical properties of seed coats and cotyledons of two field pea (Pisum sativum) cultivars contrasting in green cotyledon bleaching resistance. Euphytica, 2013, 193, 49-65.	1.2	6
58	Population study of <i>Xanthomonas</i> spp. from bean growing regions of Canada and response of bean cultivars to pathogen inoculation. Canadian Journal of Plant Pathology, 2014, 36, 341-353.	1.4	6
59	Condensed Tannin Accumulation during Seed Coat Development in Five Common Bean Genotypes. Crop Science, 2015, 55, 2826-2832.	1.8	6
60	Genetic basis for lentil adaptation to summer cropping in northern temperate environments. Plant Genome, 2021, 14, e20144.	2.8	6
61	Transcriptomic analysis of chilling stress in Phaseolus spp Environmental and Experimental Botany, 2010, 69, 95-104.	4.2	3
62	IMP-HRM: an automated pipeline for high throughput SNP marker resource development for molecular breeding in orphan crops. Euphytica, 2014, 200, 197-206.	1.2	2
63	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	1
64	Strategic Identification of New Genetic Diversity to Expand Lentil (Lens culinaris Medik.) Production (Using Nepal as an Example). Agronomy, 2021, 11, 1933.	3.0	1
65	A Semi-Automatic Workflow to Extract Irregularly Aligned Plots and Sub-Plots: A Case Study on Lentil Breeding Populations. Remote Sensing, 2021, 13, 4997.	4.0	0
66	Wild Help for Enhancing Genetic Resistance in Lentil Against Fungal Diseases. Current Issues in Molecular Biology, 2016, 19, 3-6.	2.4	0
67	RNA-Seq and Gene Ontology Analysis Reveal Differences Associated With Low R/FR-Induced Shade Responses in Cultivated Lentil and a Wild Relative. Frontiers in Genetics, 0, 13, .	2.3	0