
Peter van Luijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1417574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Science Translational Medicine, 2015, 7, 305ra147.	12.4	165
2	NTCP models for patient-rated xerostomia and sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: The role of dosimetric and clinical factors. Radiotherapy and Oncology, 2012, 105, 101-106.	0.6	149
3	Physiological Interaction of Heart and Lung in Thoracic Irradiation. International Journal of Radiation Oncology Biology Physics, 2012, 84, e639-e646.	0.8	130
4	Patient-derived tumor organoids for prediction of cancer treatment response. Seminars in Cancer Biology, 2018, 53, 258-264.	9.6	122
5	ls cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer?. Radiotherapy and Oncology, 2015, 114, 85-90.	0.6	116
6	Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. International Journal of Radiation Oncology Biology Physics, 2003, 57, 274-281.	0.8	111
7	Dose-volume effects in the rat cervical spinal cord after proton irradiation. International Journal of Radiation Oncology Biology Physics, 2002, 52, 205-211.	0.8	97
8	ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiotherapy and Oncology, 2015, 114, 96-103.	0.6	97
9	Protection of Salivary Function by Concomitant Pilocarpine During Radiotherapy: A Double-Blind, Randomized, Placebo-Controlled Study. International Journal of Radiation Oncology Biology Physics, 2008, 70, 14-22.	0.8	88
10	Current ideas to reduce or salvage radiation damage to salivary glands. Oral Diseases, 2015, 21, e1-10.	3.0	87
11	Radiation Damage to the Heart Enhances Early Radiation-Induced Lung Function Loss: Figure 1 Cancer Research, 2005, 65, 6509-6511.	0.9	83
12	Biological Considerations When Comparing Proton Therapy With Photon Therapy. Seminars in Radiation Oncology, 2013, 23, 77-87.	2.2	82
13	Prevention and treatment of radiotherapyâ€induced side effects. Molecular Oncology, 2020, 14, 1538-1554.	4.6	77
14	The Impact of Heart Irradiation on Dose–Volume Effects in the Rat Lung. International Journal of Radiation Oncology Biology Physics, 2007, 69, 552-559.	0.8	76
15	Volume effects and region-dependent radiosensitivity of the parotid gland. International Journal of Radiation Oncology Biology Physics, 2005, 62, 1090-1095.	0.8	74
16	Regional differences in radiosensitivity across the rat cervical spinal cord. International Journal of Radiation Oncology Biology Physics, 2005, 61, 543-551.	0.8	72
17	Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects. Antioxidants and Redox Signaling, 2014, 21, 338-355.	5.4	70
18	The QUANTEC criteria for parotid gland dose and their efficacy to prevent moderate to severe patient-rated xerostomia. Acta Oncológica, 2014, 53, 597-604.	1.8	68

Peter van Luijk

#	Article	IF	CITATIONS
19	Biological mechanisms of normal tissue damage: Importance for the design of NTCP models. Radiotherapy and Oncology, 2012, 105, 79-85.	0.6	67
20	Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension. Thorax, 2012, 67, 334-341.	5.6	61
21	Bath and Shower Effects in the Rat Parotid Gland Explain Increased Relative Risk of Parotid Gland Dysfunction After Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2009, 74, 1002-1005.	0.8	59
22	High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1291-1297.	0.8	58
23	Multivariate modeling of complications with data driven variable selection: Guarding against overfitting and effects of data set size. Radiotherapy and Oncology, 2012, 105, 115-121.	0.6	53
24	External validation of three dimensional conformal radiotherapy based NTCP models for patient-rated xerostomia and sticky saliva among patients treated with intensity modulated radiotherapy. Radiotherapy and Oncology, 2012, 105, 94-100.	0.6	53
25	Pulmonary Radiation Injury: Identification of Risk Factors Associated with Regional Hypersensitivity. Cancer Research, 2005, 65, 3568-3576.	0.9	52
26	Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1204-1210.	0.8	52
27	Changes in Expression of Injury After Irradiation of Increasing Volumes in Rat Lung. International Journal of Radiation Oncology Biology Physics, 2007, 67, 1510-1518.	0.8	47
28	Quantifying Local Radiation-Induced Lung Damage From Computed Tomography. International Journal of Radiation Oncology Biology Physics, 2010, 76, 548-556.	0.8	39
29	Data on dose–volume effects in the rat spinal cord do not support existing NTCP models. International Journal of Radiation Oncology Biology Physics, 2005, 61, 892-900.	0.8	35
30	A new CT-based method to quantify radiation-induced lung damage in patients. Radiotherapy and Oncology, 2015, 117, 4-8.	0.6	33
31	Lack of DNA Damage Response at Low Radiation Doses in Adult Stem Cells Contributes to Organ Dysfunction. Clinical Cancer Research, 2018, 24, 6583-6593.	7.0	31
32	Regional Responses in Radiation-Induced Normal Tissue Damage. Cancers, 2021, 13, 367.	3.7	26
33	Cardiac Function After Radiation Therapy for Breast Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 104, 392-400.	0.8	22
34	Parotid Gland Stem Cell Sparing Radiation Therapy for Patients With Head and Neck Cancer: A Double-Blind Randomized Controlled Trial. International Journal of Radiation Oncology Biology Physics, 2022, 112, 306-316.	0.8	22
35	Mouse parotid salivary gland organoids for the in vitro study of stem cell radiation response. Oral Diseases, 2021, 27, 52-63.	3.0	21
36	Relation between radiation-induced whole lung functional loss and regional structural changes in partial irradiated rat lung. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1495-1502.	0.8	19

Peter van Luijk

#	Article	IF	CITATIONS
37	Radiation-Induced Myocardial Fibrosis in Long-Term Esophageal Cancer Survivors. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1013-1021.	0.8	19
38	Volume-Dependent Expression of In-Field and Out-of-Field Effects in the Proton-Irradiated Rat Lung. International Journal of Radiation Oncology Biology Physics, 2011, 81, 262-269.	0.8	15
39	Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects. International Journal of Radiation Oncology Biology Physics, 2016, 94, 163-171.	0.8	14
40	Can we safely reduce the radiation dose to the heart while compromising the dose to the lungs in oesophageal cancer patients?. Radiotherapy and Oncology, 2020, 149, 222-227.	0.6	14
41	Salivary and Dental Complications in Childhood Cancer Survivors Treated With Radiation Therapy to the Head and Neck: A Pediatric Normal Tissue Effects in the Clinic (PENTEC) Comprehensive Review. International Journal of Radiation Oncology Biology Physics, 2021, , .	0.8	12
42	In vitro biological response of cancer and normal tissue cells to proton irradiation not affected by an added magnetic field. Radiotherapy and Oncology, 2019, 137, 125-129.	0.6	9
43	Combining Clinical and Dosimetric Features in a PBS Proton Therapy Cohort to Develop a NTCP Model for Radiation-Induced Optic Neuropathy. International Journal of Radiation Oncology Biology Physics, 2021, 110, 587-595.	0.8	9
44	The Acute and Early Effects of Whole-Brain Irradiation on Glial Activation, Brain Metabolism, and Behavior: a Positron Emission Tomography Study. Molecular Imaging and Biology, 2020, 22, 1012-1020.	2.6	8
45	A new method to assess pulmonary changes using ¹⁸ F-fluoro-2-deoxyglucose positron emission tomography for lung cancer patients following radiotherapy. Acta OncolA³gica, 2017, 56, 1597-1603.	1.8	6
46	Development of a facility for highâ€precision irradiation of cells with carbon ions. Medical Physics, 2011, 38, 256-263.	3.0	4
47	Late cardiac toxicity of neo-adjuvant chemoradiation in esophageal cancer survivors: a prospective cross-sectional pilot study. Radiotherapy and Oncology, 2021, , .	0.6	4
48	Understanding mechanisms yields novel approaches to reduce radiotherapy-related xerostomia. Annals of Translational Medicine, 2017, 5, 63-63.	1.7	3
49	Radiation-induced lung disease. , 2019, , 612-614.		0
50	In Reply to Sari and Yazici. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1291-1293.	0.8	0
51	In Reply to Kashid et al International Journal of Radiation Oncology Biology Physics, 2022, 113, 904-905.	0.8	0