
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/141709/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and<br>Application of Eco-friendly Tools for Their Assessment. Food Reviews International, 2023, 39, 160-188.                          | 4.3 | 18        |
| 2  | Effect of a Sub-Chronic Oral Exposure of Broccoli (Brassica oleracea L. Var. Italica) By-Products<br>Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study. Foods, 2022, 11, 120.                                  | 1.9 | 8         |
| 3  | Obesity Rodent Models Applied to Research with Food Products and Natural Compounds. Obesities, 2022, 2, 171-204.                                                                                                                | 0.3 | 4         |
| 4  | Drought stress effect on polyphenolic content and antioxidant capacity of cowpea pods and seeds.<br>Journal of Agronomy and Crop Science, 2021, 207, 197-207.                                                                   | 1.7 | 12        |
| 5  | Iberian Peninsula cowpea diversity: chloroplast, microsatellite and morpho-agronomic variability.<br>Systematics and Biodiversity, 2021, 19, 121-134.                                                                           | 0.5 | 4         |
| 6  | Three in One: The Potential of Brassica By-Products against Economic Waste, Environmental Hazard,<br>and Metabolic Disruption in Obesity. Nutrients, 2021, 13, 4194.                                                            | 1.7 | 8         |
| 7  | The Red Seaweed Grateloupia turuturu Prevents Epidermal Dysplasia in HPV16-Transgenic Mice.<br>Nutrients, 2021, 13, 4529.                                                                                                       | 1.7 | 1         |
| 8  | Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chemistry, 2020, 306, 125509.                                   | 4.2 | 35        |
| 9  | Metalliferous conditions induce regulation in antioxidant activities, polyphenolics and nutritional quality of <i>Moringa oleifera</i> L International Journal of Phytoremediation, 2020, 22, 1348-1361.                        | 1.7 | 6         |
| 10 | Nutrients, Antinutrients, Phenolic Composition, and Antioxidant Activity of Common Bean Cultivars and their Potential for Food Applications. Antioxidants, 2020, 9, 186.                                                        | 2.2 | 41        |
| 11 | Dietary Supplementation with Chestnut (Castanea sativa) Reduces Abdominal Adiposity in FVB/n Mice: A<br>Preliminary Study. Biomedicines, 2020, 8, 75.                                                                           | 1.4 | 15        |
| 12 | Dietary Supplementation with the Red Seaweed Porphyra umbilicalis Protects against DNA Damage and<br>Pre-Malignant Dysplastic Skin Lesions in HPV-Transgenic Mice. Marine Drugs, 2019, 17, 615.                                 | 2.2 | 12        |
| 13 | Evaluating stress responses in cowpea under drought stress. Journal of Plant Physiology, 2019, 241, 153001.                                                                                                                     | 1.6 | 50        |
| 14 | Potential effects of sulforaphane to fight obesity. Journal of the Science of Food and Agriculture, 2018, 98, 2837-2844.                                                                                                        | 1.7 | 41        |
| 15 | Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 2017, 97, 4273-4284.                                                                                                       | 1.7 | 82        |
| 16 | European cowpea landraces for a more sustainable agriculture system and novel foods. Journal of the Science of Food and Agriculture, 2017, 97, 4399-4407.                                                                       | 1.7 | 14        |
| 17 | Cowpea fresh pods – a new legume for the market: assessment of their quality and dietary characteristics of 37 cowpea accessions grown in southern Europe. Journal of the Science of Food and Agriculture, 2017, 97, 4343-4352. | 1.7 | 28        |
| 18 | Spectrophotometric versus <scp>NIRâ€MIR</scp> assessments of cowpea pods for discriminating the impact of freezing. Journal of the Science of Food and Agriculture, 2017, 97, 4285-4294.                                        | 1.7 | 5         |

| #  | Article                                                                                                                                                                                                                            | IF                | CITATIONS         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 19 | Evaluating the freezing impact on the proximate composition of immature cowpea ( <i>Vigna) Tj ETQq1 1 0.7843<br/>Food and Agriculture, 2017, 97, 4295-4305.</i>                                                                    | 14 rgBT /C<br>1.7 | Overlock 10<br>13 |
| 20 | Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health.<br>Molecules, 2017, 22, 1986.                                                                                                    | 1.7               | 57                |
| 21 | Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. BMC Genomics, 2017, 18, 891.                                                                 | 1.2               | 50                |
| 22 | Genotype by environment interactions in cowpea (Vigna unguiculata L. Walp.) grown in the Iberian<br>Peninsula. Crop and Pasture Science, 2017, 68, 924.                                                                            | 0.7               | 18                |
| 23 | Profiling of polyphenolics, nutrients and antioxidant potential of germplasm's leaves from seven cultivars of Moringa oleifera Lam Industrial Crops and Products, 2016, 83, 166-176.                                               | 2.5               | 128               |
| 24 | Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. Journal of Food Science and Technology, 2015, 52, 1008-1015.                                        | 1.4               | 51                |
| 25 | Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration.<br>Environmental and Experimental Botany, 2014, 99, 28-37.                                                                            | 2.0               | 51                |
| 26 | Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols,<br>γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). Journal of Cereal Science, 2014, 59, 15-24.                  | 1.8               | 46                |
| 27 | Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. International<br>Journal of Molecular Sciences, 2014, 15, 15638-15678.                                                                          | 1.8               | 413               |
| 28 | Study of composition, stabilization and processing of wheat germ and maize industrial by-products.<br>Industrial Crops and Products, 2013, 42, 292-298.                                                                            | 2.5               | 37                |
| 29 | Evaluation of Biological Value and Appraisal of Polyphenols and Glucosinolates from Organic<br>Baby-Leaf Salads as Antioxidants and Antimicrobials against Important Human Pathogenic Bacteria.<br>Molecules, 2013, 18, 4651-4668. | 1.7               | 17                |
| 30 | Antimicrobial Susceptibility of Aeromonas Spp. Isolated from Pig Ileum Segments to Natural<br>Isothiocyanates. Medicinal Chemistry, 2013, 9, 861-866.                                                                              | 0.7               | 5                 |
| 31 | Effect of cooking on free amino acid and mineral profiles of sweet chestnut ( <i>Castanea) Tj ETQq1 1 0.784314 r</i>                                                                                                               | gBT_/Over<br>0.3  | lock 10 Tf 5      |
| 32 | Antibacterial Effects of Glucosinolate-Derived Hydrolysis Products Against Enterobacteriaceae and<br>Enterococci Isolated from Pig lleum Segments. Foodborne Pathogens and Disease, 2012, 9, 338-345.                              | 0.8               | 12                |
| 33 | Production, purification and characterisation of polysaccharides from <i>Pleurotus ostreatus</i> with antitumour activity. Journal of the Science of Food and Agriculture, 2012, 92, 1826-1832.                                    | 1.7               | 39                |
| 34 | GLUCOSINOLATE COMPOSITION OF BRASSICA IS AFFECTED BY POSTHARVEST, FOOD PROCESSING AND MYROSINASE ACTIVITY. Journal of Food Processing and Preservation, 2012, 36, 214-224.                                                         | 0.9               | 27                |
| 35 | Correlations between disease severity, glucosinolate profiles and total phenolics and Xanthomonas campestris pv. campestris inoculation of different Brassicaceae. Scientia Horticulturae, 2011, 129, 503-510.                     | 1.7               | 37                |
| 36 | Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important<br>Brassica Vegetables. Molecules, 2011, 16, 6816-6832.                                                                             | 1.7               | 87                |

| #  | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. Journal of the Science of Food and Agriculture, 2010, 90, 1578-1589.                                                                                                   | 1.7 | 176       |
| 38 | Identification, quantification and availability of carotenoids and chlorophylls in fruit, herb and medicinal teas. Journal of Food Composition and Analysis, 2010, 23, 432-441.                                                                                                                    | 1.9 | 40        |
| 39 | Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry, 2010, 122, 1047-1054.                                                                                                                           | 4.2 | 224       |
| 40 | Industrial processing effects on chestnut fruits ( <i>Castanea sativa</i> Mill.) 3. Minerals, free sugars,<br>carotenoids and antioxidant vitamins. International Journal of Food Science and Technology, 2010, 45,<br>496-505.                                                                    | 1.3 | 44        |
| 41 | Phenolics and Antioxidant Properties of Fruit Pulp and Cell Wall Fractions of Postharvest Banana<br>(Musa acuminata Juss.) Cultivars. Journal of Agricultural and Food Chemistry, 2010, 58, 7991-8003.                                                                                             | 2.4 | 81        |
| 42 | Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Industrial Crops and Products, 2010, 31, 301-311.                                                                                                 | 2.5 | 93        |
| 43 | Antimicrobial Activity of Phenolics and Glucosinolate Hydrolysis Products and their Synergy with Streptomycin against Pathogenic Bacteria. Medicinal Chemistry, 2010, 6, 174-183.                                                                                                                  | 0.7 | 145       |
| 44 | Suppressing Potato Cyst Nematode, Globodera rostochiensis, with Extracts of Brassicacea Plants.<br>American Journal of Potato Research, 2009, 86, 327-333.                                                                                                                                         | 0.5 | 37        |
| 45 | Industrial processing effects on chestnut fruits ( <i>Castanea sativa</i> Mill.). 1. Starch, fat, energy and fibre. International Journal of Food Science and Technology, 2009, 44, 2606-2612.                                                                                                     | 1.3 | 25        |
| 46 | Industrial processing effects on chestnut fruits ( <i>Castanea sativa</i> Mill.). 2. Crude protein, free amino acids and phenolic phytochemicals. International Journal of Food Science and Technology, 2009, 44, 2613-2619.                                                                       | 1.3 | 42        |
| 47 | The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. Journal of Applied Microbiology, 2009, 106, 2086-2095.                                                                                        | 1.4 | 153       |
| 48 | Initial <i>in vitro</i> evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis<br>products against plant pathogenic bacteria. Journal of Applied Microbiology, 2009, 106, 2096-2105.                                                                                    | 1.4 | 94        |
| 49 | Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 2009, 26, 746.                                                                                                                                                | 5.2 | 333       |
| 50 | Identification and Quantification of Glucosinolates in Sprouts Derived from Seeds of Wild Eruca<br>sativa L. (Salad Rocket) and Diplotaxis tenuifolia L. (Wild Rocket) from Diverse Geographical<br>Locations. Journal of Agricultural and Food Chemistry, 2007, 55, 67-74.                        | 2.4 | 66        |
| 51 | Influence of Nitrogen and Sulfur Fertilization on the Mineral Composition of Broccoli Sprouts.<br>Journal of Plant Nutrition, 2007, 30, 1035-1046.                                                                                                                                                 | 0.9 | 12        |
| 52 | Primary and Secondary Metabolite Composition of Kernels from Three Cultivars of Portuguese<br>Chestnut (Castanea sativaMill.) at Different Stages of Industrial Transformation. Journal of<br>Agricultural and Food Chemistry, 2007, 55, 3508-3516.                                                | 2.4 | 97        |
| 53 | Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries<br>(Prunus avium L.). Food Chemistry, 2007, 103, 976-984.                                                                                                                                       | 4.2 | 207       |
| 54 | Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites inEruca<br>sativa(Salad Rocket),Diplotaxis erucoides(Wall Rocket),Diplotaxis tenuifolia(Wild Rocket), andBunias<br>orientalis(Turkish Rocket). Journal of Agricultural and Food Chemistry, 2006, 54, 4005-4015. | 2.4 | 168       |

| #  | Article                                                                                                                                                                                                                                                            | IF                | CITATIONS            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 55 | Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiology, 2006, 26, 93-104.                                                                                                                                           | 1.4               | 152                  |
| 56 | Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli<br>sprouts (Brassica oleracea var.italica). Journal of the Science of Food and Agriculture, 2006, 86,<br>1512-1516.                                              | 1.7               | 102                  |
| 57 | Glucosinolate assessment in Brassica oleracea leaves by near-infrared spectroscopy. Journal of<br>Agricultural Science, 2005, 143, 65-73.                                                                                                                          | 0.6               | 25                   |
| 58 | Storage affects the phenolic profiles and antioxidant activities of cherries(Prunus avium L) on human low-density lipoproteins. Journal of the Science of Food and Agriculture, 2004, 84, 1013-1020.                                                               | 1.7               | 50                   |
| 59 | Effect of Ripeness and Postharvest Storage on the Phenolic Profiles of Cherries (Prunus aviumL.).<br>Journal of Agricultural and Food Chemistry, 2004, 52, 523-530.                                                                                                | 2.4               | 212                  |
| 60 | Profiling Glucosinolates, Flavonoids, Alkaloids, and Other Secondary Metabolites in Tissues ofAzima tetracanthaL. (Salvadoraceae). Journal of Agricultural and Food Chemistry, 2004, 52, 5856-5862.                                                                | 2.4               | 43                   |
| 61 | Influence of Foliar Boron Application on Fruit Set and Yield of Hazelnut. Journal of Plant Nutrition, 2003, 26, 561-569.                                                                                                                                           | 0.9               | 26                   |
| 62 | MINERAL CONTENT OF PRIMARY AND SECONDARY INFLORESCENCES OF ELEVEN BROCCOLI CULTIVARS GROWN IN EARLY AND LATE SEASONS. Journal of Plant Nutrition, 2002, 25, 1741-1751.                                                                                             | 0.9               | 18                   |
| 63 | Influence of Temperature and Ontogeny on the Levels of Glucosinolates in Broccoli (Brassica) Tj ETQq1 1 0.7843<br>of Agricultural and Food Chemistry, 2002, 50, 6239-6244.                                                                                         | 14 rgBT /C<br>2.4 | Overlock 10 T<br>151 |
| 64 | Effects of Intact Glucosinolates and Products Produced from Glucosinolates in<br>Myrosinase-Catalyzed Hydrolysis on the Potato Cyst Nematode (Globodera rostochiensisCv. Woll).<br>Journal of Agricultural and Food Chemistry, 2002, 50, 690-695.                  | 2.4               | 108                  |
| 65 | In vitro activity of 2-phenylethyl glucosinolate, and its hydrolysis derivatives on the root-knot<br>nematode Globodera rostochiensis (Woll.). Scientia Horticulturae, 2002, 92, 75-81.                                                                            | 1.7               | 29                   |
| 66 | Brassica by-products in diets of rainbow trout (Oncorhynchus mykiss) and their effects on<br>performance, body composition, thyroid status and liver histology. Animal Feed Science and<br>Technology, 2002, 101, 171-182.                                         | 1.1               | 19                   |
| 67 | Relationship between free amino acids and glucosinolates in primary and secondary inflorescences of<br>11 broccoli (Brassica oleracea L varitalica) cultivars grown in early and late seasons. Journal of the<br>Science of Food and Agriculture, 2002, 82, 61-64. | 1.7               | 12                   |
| 68 | Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L.<br>(salad rocket). Phytochemistry, 2002, 61, 25-30.                                                                                                         | 1.4               | 113                  |
| 69 | NUT GROWTH AND DEVELOPMENT IN â€~BUTLER' HAZELNUT. Acta Horticulturae, 2001, , 377-384.                                                                                                                                                                            | 0.1               | 7                    |
| 70 | Glucose, fructose and sucrose content in broccoli, white cabbage and Portuguese cabbage grown in early and late seasons. Journal of the Science of Food and Agriculture, 2001, 81, 1145-1149.                                                                      | 1.7               | 47                   |
| 71 | Free amino acid composition in primary and secondary inflorescences of 11 broccoli (Brassica) Tj ETQq1 1 0.7843<br>Food and Agriculture, 2001, 81, 295-299.                                                                                                        | 14 rgBT /<br>1.7  | Overlock 10<br>35    |
| 72 | CONCENTRATION OF INDIVIDUAL CYTOKININS IN NUTS OF CORYLUS AVELLANA L. AND THEIR RELATIONSHIP WITH BLANKS. Acta Horticulturae, 2001, , 385-392.                                                                                                                     | 0.1               | 2                    |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Total and Individual Glucosinolate Content in 11 Broccoli Cultivars Grown in Early and Late Seasons.<br>Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 56-59.   | 0.5 | 76        |
| 74 | Towards a more sustainable agriculture system: The effect of glucosinolates on the control of soil-borne diseases. Journal of Horticultural Science and Biotechnology, 1999, 74, 667-674.               | 0.9 | 44        |
| 75 | 10 Chemical composition. Developments in Plant Genetics and Breeding, 1999, 4, 315-357.                                                                                                                 | 0.6 | 24        |
| 76 | Effect of post-harvest treatments on the level of glucosinolates in broccoli. Journal of the Science of Food and Agriculture, 1999, 79, 1028-1032.                                                      | 1.7 | 116       |
| 77 | The effect of light and temperature on glucosinolate concentration in the leaves and roots of cabbage seedlings. Journal of the Science of Food and Agriculture, 1998, 78, 208-212.                     | 1.7 | 59        |
| 78 | Glucosinolates from flower buds of Portuguese Brassica crops. Phytochemistry, 1997, 44, 1415-1419.                                                                                                      | 1.4 | 46        |
| 79 | Daily Variation in Glucosinolate Concentrations in the Leaves and Roots of Cabbage Seedlings in Two<br>Constant Temperature Regimes. Journal of the Science of Food and Agriculture, 1997, 73, 364-368. | 1.7 | 85        |
| 80 | Therapeutic and toxicological effects of natural compounds: Data from HPV16-transgenic and ICR mice<br>(Review). World Academy of Sciences Journal, 0, , .                                              | 0.4 | 2         |