Ana Yatsuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1416667/publications.pdf

Version: 2024-02-01

39 papers	820 citations	623734 14 h-index	501196 28 g-index
39 all docs	39 docs citations	39 times ranked	970 citing authors

#	Article	IF	CITATIONS
1	Characterization of the Neospora caninum peroxiredoxin: a novel peroxidase and antioxidant enzyme. Parasitology Research, 2022, 121, 1735-1748.	1.6	3
2	Molecular characterization of NCLIV_011700 of Neospora caninum, a low sequence identity rhoptry protein. Experimental Parasitology, 2022, 238, 108268.	1.2	1
3	Hippo pathway-related genes expression is deregulated in myeloproliferative neoplasms. Medical Oncology, 2022, 39, .	2.5	1
4	Atovaquone, chloroquine, primaquine, quinine and tetracycline: antiproliferative effects of relevant antimalarials on Neospora caninum. Brazilian Journal of Veterinary Parasitology, 2021, 30, e022120.	0.7	4
5	Gold(III) complexes with thiosemicarbazonate ligands as potential anticancer agents: Cytotoxicity and interactions with biomolecular targets. European Journal of Pharmaceutical Sciences, 2021, 162, 105834.	4.0	12
6	Glutathione reductase: A cytoplasmic antioxidant enzyme and a potential target for phenothiazinium dyes in Neospora caninum. International Journal of Biological Macromolecules, 2021, 187, 964-975.	7.5	6
7	GC-MS Analysis, Bioactivity-based Molecular Networking and Antiparasitic Potential of the Antarctic Alga Desmarestia antarctica. Planta Medica International Open, 2020, 07, e122-e132.	0.5	5
8	Inhibitory action of phenothiazinium dyes against Neospora caninum. Scientific Reports, 2020, 10, 7483.	3.3	12
9	Actin from the apicomplexan Neospora caninum (NcACT) has different isoforms in 2D electrophoresis. Parasitology, 2019, 146, 33-41.	1.5	2
10	The soluble fraction of Neospora caninum treated with PI-PLC is dominated by NcSRS29B and NcSRS29C. Experimental Parasitology, 2019, 204, 107731.	1.2	2
11	Synergic in vitro combinations of artemisinin, pyrimethamine and methylene blue against Neospora caninum. Veterinary Parasitology, 2018, 249, 92-97.	1.8	6
12	Functional characterisation of the actin-depolymerising factor from the apicomplexan Neospora caninum (NcADF). Molecular and Biochemical Parasitology, 2018, 224, 26-36.	1.1	2
13	Evaluation of methylene blue, pyrimethamine and its combination on an <i>in vitro Neospora caninum</i> in vitro Neospora caninumin	1.5	9
14	Constitutive expression and characterization of a surface SRS (NcSRS67) protein of Neospora caninum with no orthologue in Toxoplasma gondii. Parasitology International, 2017, 66, 173-180.	1.3	7
15	Effects of (â^)-6,6′-dinitrohinokinin on adult worms of Schistosoma mansoni: a proteomic analyses. Revista Brasileira De Farmacognosia, 2016, 26, 334-341.	1.4	5
16	The effects of photodynamic treatment with new methylene blue N on the Candida albicans proteome. Photochemical and Photobiological Sciences, 2016, 15, 1503-1513.	2.9	27
17	Comparison of an ELISA assay for the detection of adhesive/invasive Neospora caninum tachyzoites. Brazilian Journal of Veterinary Parasitology, 2014, 23, 36-43.	0.7	3
18	The chloramphenicol acetyltransferase vector as a tool for stable tagging of Neospora caninum. Molecular and Biochemical Parasitology, 2014, 196, 75-81.	1.1	12

#	Article	IF	CITATIONS
19	A transgenic Neospora caninum strain based on mutations of the dihydrofolate reductase-thymidylate synthase gene. Experimental Parasitology, 2014, 138, 40-47.		10
20	Unravelling the Neospora caninum secretome through the secreted fraction (ESA) and quantification of the discharged tachyzoite using high-resolution mass spectrometry-based proteomics. Parasites and Vectors, 2013, 6, 335.	2.5	15
21	A new thrombospondin-related anonymous protein homologue in <i>Neospora caninum</i> (NcMIC2-like1). Parasitology, 2011, 138, 287-297.	1.5	21
22	A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Fungal Biology, 2010, 114, 572-579.	2.5	41
23	An AC-5 cathepsin B-like protease purified from <i>Haemonchus contortus </i> excretory secretory products shows protective antigen potential for lambs. Veterinary Research, 2009, 40, 41.	3.0	24
24	Immunological responses and cytokine gene expression analysis to Cooperia punctata infections in resistant and susceptible Nelore cattle. Veterinary Parasitology, 2008, 155, 95-103.	1.8	29
25	Identification of Secreted Cysteine Proteases from the Parasitic Nematode Haemonchus contortus Detected by Biotinylated Inhibitors. Infection and Immunity, 2006, 74, 1989-1993.	2.2	34
26	EVIDENCE AND POTENTIAL FOR TRANSMISSION OF HUMAN AND SWINE TAENIA SOLIUM CYSTICERCOSIS IN THE PIRACURUCA REGION, PIAUÃ, BRAZIL. American Journal of Tropical Medicine and Hygiene, 2006, 75, 933-935.	1.4	16
27	Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infection and Immunity, 2004, 72, 2947-2955.	2.2	102
28	A Babesia bovis merozoite protein with a domain architecture highly similar to the thrombospondin-related anonymous protein (TRAP) present in Plasmodium sporozoites. Molecular and Biochemical Parasitology, 2004, 136, 25-34.	1.1	67
29	Vaccination against the nematode Haemonchus contortus with a thiol-binding fraction from the excretory/secretory products (ES). Vaccine, 2004, 22, 618-628.	3.8	51
30	Characterisation of erythrocyte invasion by Babesia bovis merozoites efficiently released from their host cell after high-voltage pulsing. Microbes and Infection, 2003, 5, 365-372.	1.9	33
31	Comprehensive Analysis of the Secreted Proteins of the Parasite Haemonchus contortus Reveals Extensive Sequence Variation and Differential Immune Recognition. Journal of Biological Chemistry, 2003, 278, 16941-16951.	3.4	188
32	A family of activation associated secreted protein (ASP) homologues of Cooperia punctata. Research in Veterinary Science, 2002, 73, 297-306.	1.9	21
33	Serum immunoglobulin E response in calves infected with the lungworm Dictyocaulus viviparus and its correlation with protection. Parasite Immunology, 2002, 24, 47-56.	1.5	26
34	Cooperia punctata trickle infections: parasitological parameters and evaluation of a Cooperia recombinant 14.2 kDa protein ELISA for estimating cumulative exposure of calves. Veterinary Parasitology, 2002, 105, 131-138.	1.8	1
35	In vitro interaction of Brazilian strains of the Nematode-trapping fungi Arthrobotrys spp. on Panagrellus sp. and Cooperia punctata. Memorias Do Instituto Oswaldo Cruz, 2001, 96, 861-864.	1.6	11
36	A Cooperia punctata gene family encoding 14ÂkDa excretory–secretory antigens conserved for trichostrongyloid nematodes. Parasitology, 2001, 123, 631-9.	1.5	5

#	Article	IF	CITATIONS
37	Dynamics of the humoral immune response of calves infected and re-infected with Cooperia punctata. Veterinary Parasitology, 2000, 87, 287-300.	1.8	5
38	A hybrid plasmid pGEM-pET28 applied for heterologous expression of Neospora caninum actin. Matters, 0, , .	1.0	1
39	Proteomic data on Thrombospondin-related proteins (TRAP) from Neospora caninum (NcMIC2-like1 and) Tj ET	Qq1 1.0.78	4314 rgBT /○∨