
Zhengwen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1416651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of gibberellin applications before flowering on the phenotype, ripening, and flavonoid compounds of Syrah grape berries. Journal of the Science of Food and Agriculture, 2022, 102, 6100-6111.	3.5	10
2	ABA signaling plays a key role in regulated deficit irrigation-driven anthocyanins accumulation in â€~Cabernet Sauvignon' grape berries. Environmental and Experimental Botany, 2021, 181, 104290.	4.2	14
3	Transcriptomic and Metabolic Analyses Provide New Insights into the Effects of Exogenous Sucrose on Monoterpene Synthesis in "Muscat Hamburg―Grapes. Journal of Agricultural and Food Chemistry, 2021, 69, 4164-4176.	5.2	11
4	Anthocyanin degradation and the underlying molecular mechanism in a red-fleshed grape variety. LWT - Food Science and Technology, 2021, 151, 112198.	5.2	14
5	Transcriptomics Integrated with Metabolomics Reveals the Effect of Cluster Thinning on Monoterpene Biosynthesis in â€~Muscat Hamburg' Grape. Foods, 2021, 10, 2718.	4.3	4
6	Cluster bagging promotes melatonin biosynthesis in the berry skins of Vitis vinifera cv. Cabernet Sauvignon and Carignan during development and ripening. Food Chemistry, 2020, 305, 125502.	8.2	12
7	Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon (Vitis vinifera L.) growing on alkaline soil and wine chromatic characteristics. Food Chemistry, 2020, 314, 126182.	8.2	24
8	Nitrogen and phosphorus co-starvation inhibits anthocyanin synthesis in the callus of grape berry skin. Plant Cell, Tissue and Organ Culture, 2020, 142, 313-325.	2.3	16
9	Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Food Research International, 2020, 137, 109736.	6.2	18
10	R2R3-MYB Transcription Factors Regulate Anthocyanin Biosynthesis in Grapevine Vegetative Tissues. Frontiers in Plant Science, 2020, 11, 527.	3.6	29
11	Effect of cluster zone leaf removal on monoterpene profiles of Sauvignon Blanc grapes and wines. Food Research International, 2020, 131, 109028.	6.2	28
12	Melatonin treatment of pre-veraison grape berries modifies phenolic components and antioxidant activity of grapes and wine. Food Science and Technology, 2019, 39, 35-42.	1.7	28
13	Harvesting at the Right Time: Maturity and Its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Molecules, 2019, 24, 2777.	3.8	14
14	Coordinated Regulation of Grape Berry Flesh Color by Transcriptional Activators and Repressors. Journal of Agricultural and Food Chemistry, 2019, 67, 11815-11824.	5.2	29
15	Effects of the severity and timing of basal leaf removal on the amino acids profiles of Sauvignon Blanc grapes and wines. Journal of Integrative Agriculture, 2019, 18, 2052-2062.	3.5	22
16	Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regulation, 2019, 87, 83-92.	3.4	11
17	Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil. Food Chemistry, 2018, 253, 164-170.	8.2	42
18	Reduction of Dihydrokaempferol by <i>Vitis vinfera</i> Dihydroflavonol 4-Reductase to Produce Orange Pelargonidin-Type Anthocyanins. Journal of Agricultural and Food Chemistry, 2018, 66, 3524-3532.	5.2	25

ZHENGWEN ZHANG

#	Article	IF	CITATIONS
19	Effects of leaf removal and cluster thinning on berry quality of Vitis vinifera cultivars in the region of Weibei Dryland in China. Journal of Integrative Agriculture, 2018, 17, 1620-1630.	3.5	20
20	Influence of natural variation in berry size on the volatile profiles of Vitis vinifera L. cv. Merlot and Cabernet Gernischt grapes. PLoS ONE, 2018, 13, e0201374.	2.5	10
21	Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiology and Biochemistry, 2018, 130, 555-565.	5.8	46
22	Volatile profiles of Cabernet Gernischet wine under rain-shelter cultivation and open-field cultivation using solid-phase micro-extraction–gas chromatography/mass spectrometry. International Journal of Food Properties, 2017, 20, 2181-2196.	3.0	6
23	Melatonin in grapes and grape-related foodstuffs: A review. Food Chemistry, 2017, 231, 185-191.	8.2	38
24	Fruit sphere microenvironments and berry phenolic content of Cabernet Sauvignon (Vitis vinifera L.) cultivated under rain-shelter systems with coloured plastic film. Food Science and Technology, 2017, 37, 585-592.	1.7	5
25	Aromatic profiles of young wines from berries at different heights on grapevines. Food Science and Technology, 2016, 36, 248-258.	1.7	8
26	Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars. Molecules, 2015, 20, 22767-22780.	3.8	40
27	Promoting Effect of Foliage Sprayed Zinc Sulfate on Accumulation of Sugar and Phenolics in Berries of Vitis vinifera cv. Merlot Growing on Zinc Deficient Soil. Molecules, 2015, 20, 2536-2554.	3.8	62
28	Aroma Characterization of Cabernet Sauvignon Wine from the Plateau of Yunnan (China) with Different Altitudes Using SPME-GC/MS. International Journal of Food Properties, 2015, 18, 1584-1596.	3.0	29
29	Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera â€~Cabernet Sauvignon' berries during véraison. Plant Physiology and Biochemistry, 2015, 94, 197-208.	5.8	66
30	Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chemistry, 2015, 185, 127-134.	8.2	75
31	Aroma characterization of Chinese Hutai-8 wines: Comparing with Merlot and Cabernet Sauvignon wines. Scientia Horticulturae, 2015, 194, 237-245.	3.6	16
32	Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles. Molecules, 2014, 19, 13683-13703.	3.8	100
33	The ameliorative effects of exogenous melatonin on grape cuttings under waterâ€deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research, 2014, 57, 200-212.	7.4	257
34	Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Research International, 2013, 51, 482-489.	6.2	101
35	Phenolic characterization of young wines made from spine grape (Vitis davidii Foex) grown in Chongyi County (China). Food Research International, 2012, 49, 664-671.	6.2	29
36	Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chemistry, 2012, 134, 2049-2056.	8.2	109