Grazyna Mosieniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1416616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging, 2022, 14, 572-595.	1.4	34
2	Cellular Senescence in Brain Aging. Frontiers in Aging Neuroscience, 2021, 13, 646924.	1.7	129
3	Chromatin-Directed Proteomics Identifies ZNF84 as a p53-Independent Regulator of p21 in Genotoxic Stress Response. Cancers, 2021, 13, 2115.	1.7	11
4	A common signature of cellular senescence; does it exist?. Ageing Research Reviews, 2021, 71, 101458.	5.0	52
5	Trimethylamine But Not Trimethylamine Oxide Increases With Age in Rat Plasma and Affects Smooth Muscle Cells Viability. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1276-1283.	1.7	37
6	Inhibition of NADPH Oxidases Activity by Diphenyleneiodonium Chloride as a Mechanism of Senescence Induction in Human Cancer Cells. Antioxidants, 2020, 9, 1248.	2.2	15
7	Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Research Reviews, 2019, 55, 100941.	5.0	37
8	Curcumin induces multiple signaling pathways leading to vascular smooth muscle cell senescence. Biogerontology, 2019, 20, 783-798.	2.0	10
9	TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins, 2019, 11, 490.	1.5	81
10	The Role of Curcumin in the Modulation of Ageing. International Journal of Molecular Sciences, 2019, 20, 1239.	1.8	93
11	Curcumin induces cell death without oligonucleosomal DNA fragmentation in quiescent and proliferating human CD8+ cells Acta Biochimica Polonica, 2019, 53, 531-538.	0.3	34
12	Abstract P3021: Trimethylamine but Not Trimethylamine N-Oxide Increases Blood Pressure in Rats, Affects Viability of Vascular Smooth Muscle Cells and Degrades Protein Structure. Hypertension, 2019, 74, .	1.3	0
13	Insight into the role of PIKK family members and NF-D°B in DNAdamage-induced senescence and senescence and senescence-associated secretory phenotype of colon cancer cells. Cell Death and Disease, 2018, 9, 44.	2.7	28
14	Is DNA damage indispensable for stress-induced senescence?. Mechanisms of Ageing and Development, 2018, 170, 13-21.	2.2	66
15	Czym jest i czym nie jest starzenie komórki?. Postepy Biochemii, 2018, 64, 110-118.	0.5	31
16	Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells. Journal of Biomolecular Structure and Dynamics, 2017, 35, 1474-1490.	2.0	16
17	Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype. International Journal of Biochemistry and Cell Biology, 2016, 74, 33-43.	1.2	35
18	NOX4 downregulation leads to senescence of human vascular smooth muscle cells. Oncotarget, 2016, 7, 66429-66443.	0.8	39

GRAZYNA MOSIENIAK

#	Article	IF	CITATIONS
19	Morphological and Functional Characteristic of Senescent Cancer Cells. Current Drug Targets, 2016, 17, 377-387.	1.0	72
20	Polyploidy Formation in Doxorubicin-Treated Cancer Cells Can Favor Escape from Senescence. Neoplasia, 2015, 17, 882-893.	2.3	102
21	Curcumin induces senescence of primary human cells building the vasculature in a DNA damage and ATM-independent manner. Age, 2015, 37, 9744.	3.0	34
22	The Role of Nibrin in Doxorubicin-Induced Apoptosis and Cell Senescence in Nijmegen Breakage Syndrome Patients Lymphocytes. PLoS ONE, 2014, 9, e104964.	1.1	11
23	A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology, 2014, 15, 47-64.	2.0	105
24	DNA damage-independent apoptosis induced by curcumin in normal resting human T cells and leukaemic Jurkat cells. Mutagenesis, 2013, 28, 411-416.	1.0	30
25	Cellular Senescence in Ageing, Age-Related Disease and Longevity. Current Vascular Pharmacology, 2013, 12, 698-706.	0.8	74
26	Curcumin induces permanent growth arrest of human colon cancer cells: Link between senescence and autophagy. Mechanisms of Ageing and Development, 2012, 133, 444-455.	2.2	129
27	Expression of Oncogenic Kinase Bcr-Abl Impairs Mitotic Checkpoint and Promotes Aberrant Divisions and Resistance to Microtubule-Targeting Agents. Molecular Cancer Therapeutics, 2010, 9, 1328-1338.	1.9	27
28	Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mechanisms of Ageing and Development, 2009, 130, 24-32.	2.2	150
29	Methotrexate-induced senescence in human adenocarcinoma cells is accompanied by induction of p21waf1/cip1 expression and lack of polyploidy. Cancer Letters, 2009, 284, 95-101.	3.2	23
30	Curcumin abolishes apoptosis resistance of calcitriol-differentiated HL-60 cells. FEBS Letters, 2006, 580, 4653-4660.	1.3	26
31	Curcumin Affects Components of the Chromosomal Passenger Complex and Induces Mitotic Catastrophe in Apoptosis-Resistant Bcr-Abl-Expressing Cells. Molecular Cancer Research, 2006, 4, 457-469.	1.5	83
32	Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Molecular Cancer Therapeutics, 2006, 5, 927-934.	1.9	74
33	Curcumin induces cell death without oligonucleosomal DNA fragmentation in quiescent and proliferating human CD8+ cells. Acta Biochimica Polonica, 2006, 53, 531-8.	0.3	13
34	Cyclosporin A, an Immunosuppressive Drug, Induces Programmed Cell Death in Rat C6 Glioma Cells by a Mechanism that Involves the AP-1 Transcription Factor. Journal of Neurochemistry, 2002, 68, 1142-1149.	2.1	52
35	Cyclosporin A-sensitive signaling pathway involving calcineurin regulates survival of reactive astrocytes. Neurochemistry International, 2001, 38, 409-415.	1.9	40
36	Changes of the Trans-Activating Potential of AP-1 Transcription Factor During Cyclosporin A-Induced Apoptosis of Glioma and Cells Are Mediated by Phosphorylation and Alterations of AP-1 Composition. Journal of Neurochemistry, 2001, 74, 42-51.	2.1	49

#	Article	IF	CITATIONS
37	Treatment of hippocampal neurons with cyclosporin A results in calcium overload and apoptosis which are independent on NMDA receptor activation. British Journal of Pharmacology, 2001, 133, 997-1004.	2.7	29
38	Nuclear Factor of Activated T Cells (NFAT) as a New Component of the Signal Transduction Pathway in Glioma Cells. Journal of Neurochemistry, 1998, 71, 134-141.	2.1	29
39	Orthovanadate, an inhibitor of tyrosine phosphatases, induces apoptotic cell death of rat C6 glioma cells. Neuroscience Research Communications, 1997, 20, 121-128.	0.2	0
40	Elevated AP-1 transcription factor DNA binding activity at the onset of functional plasticity during development of rat sensory cortical areas. Molecular Brain Research, 1995, 33, 295-304.	2.5	28