Stuart Wyithe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1416545/publications.pdf

Version: 2024-02-01

129 papers	7,800 citations	44069 48 h-index	85 g-index
130	130	130	4776
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies. Publications of the Astronomical Society of Australia, 2013, 30, .	3.4	892
2	Gravitational waves from binary supermassive black holes missing in pulsar observations. Science, 2015, 349, 1522-1525.	12.6	386
3	Selfâ€regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and Xâ€Ray Luminosity Functions of Quasars. Astrophysical Journal, 2003, 595, 614-623.	4.5	366
4	Lowâ€Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions forLISAand Pulsar Timing Arrays. Astrophysical Journal, 2003, 590, 691-706.	4.5	260
5	Reionization of Hydrogen and Helium by Early Stars and Quasars. Astrophysical Journal, 2003, 586, 693-708.	4.5	229
6	FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7. Astrophysical Journal, 2016, 833, 102.	4.5	147
7	The impact of The IGM on high-redshift Ly emission lines. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1175-1186.	4.4	144
8	Was the Universe Reionized by Massive Metal-free Stars?. Astrophysical Journal, 2003, 588, L69-L72.	4. 5	143
9	Avalanche Dynamics of Radio Pulsar Glitches. Astrophysical Journal, 2008, 672, 1103-1118.	4.5	141
10	The Phase II Murchison Widefield Array: Design overview. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	140
11	Possibility of Precise Measurement of the Cosmological Power Spectrum with a Dedicated Survey of 21Âcm Emission after Reionization. Physical Review Letters, 2008, 100, 161301.	7.8	139
12	Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution. Science, 2013, 342, 334-337.	12.6	133
13	A Physical Model for the Luminosity Function of Highâ€Redshift Quasars. Astrophysical Journal, 2002, 581, 886-894.	4.5	129
14	Deep multiredshift limits on Epoch of Reionization 21Âcm power spectra from four seasons of Murchison Widefield Array observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4711-4727.	4.4	129
15	FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal, 2015, 804, 14.	4.5	122
16	A large neutral fraction of cosmic hydrogen a billion years after the Big Bang. Nature, 2004, 427, 815-817.	27.8	116
17	Gravitational Lens Statistics for Generalized NFW Profiles: Parameter Degeneracy and Implications for Selfâ€Interacting Cold Dark Matter. Astrophysical Journal, 2001, 555, 504-523.	4.5	106
18	A characteristic size of â^⅓10 Mpc for the ionized bubbles at the end of cosmic reionization. Nature, 2004, 432, 194-196.	27.8	99

#	Article	IF	Citations
19	CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR. Astrophysical Journal, 2016, 818, 139.	4.5	98
20	Luminosity functions of Ly emitting galaxies and cosmic reionization of hydrogen. Monthly Notices of the Royal Astronomical Society, 2007, 379, 253-259.	4.4	97
21	Improving the Epoch of Reionization Power Spectrum Results from Murchison Widefield Array Season 1 Observations. Astrophysical Journal, 2019, 884, 1.	4.5	92
22	A 189 MHz, 2400 deg (sup) 2 (sup) POLARIZATION SURVEY WITH THE MURCHISON WIDEFIELD ARRAY 32-ELEMENT PROTOTYPE. Astrophysical Journal, 2013, 771, 105.	4.5	79
23	First limits on the 21Âcm power spectrum during the Epoch of X-ray heating. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4320-4347.	4.4	79
24	FAST HOLOGRAPHIC DECONVOLUTION: A NEW TECHNIQUE FOR PRECISION RADIO INTERFEROMETRY. Astrophysical Journal, 2012, 759, 17.	4.5	76
25	MEASUREMENT OF GALAXY CLUSTERING AT <i>z</i> å^1/4 7.2 AND THE EVOLUTION OF GALAXY BIAS FROM 3.8 < <i>z</i> < <i>a</i> ab< <i>a</i> a	4.5	76
26	A microlensing study of the accretion disc in the quasar MG 0414+0534 $<$ sup $>$ â $<$ $<$ /sup $>$. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1955-1960.	4.4	74
27	CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal Letters, 2015, 807, L28.	8.3	73
28	Improved Constraints on the Neutral Intergalactic Hydrogen Surrounding Quasars at Redshiftsz> 6. Astrophysical Journal, 2005, 628, 575-582.	4.5	72
29	Binary supermassive black hole environments diminish the gravitational wave signal in the pulsar timing band. Monthly Notices of the Royal Astronomical Society, 2014, 442, 56-68.	4.4	70
30	First Season MWA Phase II Epoch of Reionization Power Spectrum Results at Redshift 7. Astrophysical Journal, 2019, 887, 141.	4.5	69
31	Fluctuations in 21-cm emission after reionization. Monthly Notices of the Royal Astronomical Society, 2008, 383, 606-614.	4.4	68
32	Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1057-1070.	4.4	68
33	DOES A "STOCHASTIC―BACKGROUND OF GRAVITATIONAL WAVES EXIST IN THE PULSAR TIMING BAND?. Astrophysical Journal, 2012, 761, 84.	4.5	67
34	Evolution in the escape fraction of ionizing photons and the decline in strong Lyl \hat{i} emission from z > 6 galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3309-3316.	4.4	67
35	CORRECTING THE <i>>z </i> > \hat{a}^{1} /4 8 GALAXY LUMINOSITY FUNCTION FOR GRAVITATIONAL LENSING MAGNIFICATION BIAS. Astrophysical Journal, 2015, 805, 79.	4.5	67
36	THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY. Astrophysical Journal, 2016, 825, 114.	4.5	67

3

#	Article	IF	CITATIONS
37	On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits. Astrophysical Journal, Supplement Series, 2018, 234, 41.	7.7	66
38	THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS. Astrophysical Journal, 2016, 819, 8.	4.5	65
39	Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1007-1012.	4.4	64
40	The EoR sensitivity of the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L5-L9.	3.3	62
41	LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE. Astrophysical Journal, 2016, 830, 38.	4.5	58
42	Undetected Sources Allow Transmission of the Lyl̂ \pm Line from Galaxies Prior to Reionization. Astrophysical Journal, 2005, 625, 1-5.	4.5	57
43	Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2772-2783.	4.4	56
44	Prospects for Redshifted 21 cm Observations of Quasar HiiRegions. Astrophysical Journal, 2005, 634, 715-727.	4.5	55
45	Gravitational Lensing of the Sloan Digital Sky Survey Highâ€Redshift Quasars. Astrophysical Journal, 2002, 577, 57-68.	4.5	55
46	A survey for transients and variables with the Murchison Widefield Array 32-tile prototype at 154 MHz. Monthly Notices of the Royal Astronomical Society, 2014, 438, 352-367.	4.4	54
47	Biased reionization and non-Gaussianity in redshifted 21-cm intensity maps of the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1647-1657.	4.4	53
48	A gravitational microlensing determination of continuum source size in Q2237+0305. Monthly Notices of the Royal Astronomical Society, 2000, 315, 62-68.	4.4	50
49	The 21-cm power spectrum after reionization. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1926-1934.	4.4	48
50	Photometric Solutions for Detached Eclipsing Binaries: Selection of Ideal Distance Indicators in the Small Magellanic Cloud. Astrophysical Journal, 2001, 559, 260-274.	4.5	47
51	The growth of discs and bulges during hierarchical galaxy formation – I. Fast evolution versus secular processes. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4109-4129.	4.4	47
52	A measurement of the transverse velocity of Q2237+0305. Monthly Notices of the Royal Astronomical Society, 1999, 309, 261-272.	4.4	46
53	Suppression of dwarf galaxy formation by cosmic reionization. Nature, 2006, 441, 322-324.	27.8	46
54	A small source in Q2237+0305?. Monthly Notices of the Royal Astronomical Society, 2000, 318, 762-768.	4.4	45

#	Article	IF	Citations
55	Determining the microlens mass function from quasar microlensing statistics. Monthly Notices of the Royal Astronomical Society, 2001, 320, 21-30.	4.4	45
56	Redshifted 21 Centimeter Signatures around the Highest Redshift Quasars. Astrophysical Journal, 2004, 610, 117-127.	4.5	45
57	Photometric Solutions for Semidetached Eclipsing Binaries: Selection of Distance Indicators in the Small Magellanic Cloud. Astrophysical Journal, 2002, 571, 293-319.	4.5	44
58	Limits on the microlens mass function of Q2237+0305. Monthly Notices of the Royal Astronomical Society, 2000, 315, 51-61.	4.4	43
59	Very massive stars in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1589-1598.	4.4	43
60	The correlation between the distribution of galaxies and 21-cm emission at high redshifts. Monthly Notices of the Royal Astronomical Society, 2007, 375, 1034-1042.	4.4	42
61	Determining the H i content of galaxies via intensity mapping cross-correlations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3220-3226.	4.4	42
62	Cosmological constraints from 21cm surveys after reionization. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 030-030.	5.4	41
63	Comparing Redundant and Sky-model-based Interferometric Calibration: A First Look with Phase II of the MWA. Astrophysical Journal, 2018, 863, 170.	4.5	41
64	Realistic event rates for detection of supermassive black hole coalescence by LISA. Monthly Notices of the Royal Astronomical Society, 2005, 361, 1145-1152.	4.4	39
65	Constraining reionization using 21-cm observations in combination with CMB and Lyl± forest data. Monthly Notices of the Royal Astronomical Society, 0, 408, 57-70.	4.4	39
66	A MICROLENSING MEASUREMENT OF DARK MATTER FRACTIONS IN THREE LENSING GALAXIES. Astrophysical Journal, 2011, 731, 71.	4.5	39
67	The Murchison Widefield Array Correlator. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	39
68	A suppressed contribution of low-mass galaxies to reionization due to supernova feedback. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2741-2754.	4.4	38
69	Photon trapping enables super-Eddington growth of black hole seeds in galaxies at high redshift. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2892-2902.	4.4	37
70	Constraining the quasar contribution to the reionization of cosmic hydrogen. Monthly Notices of the Royal Astronomical Society, 2007, 374, 627-633.	4.4	35
71	ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY. Astronomical Journal, 2013, 146, 103.	4.7	34
72	Constraints on the Process that Regulates the Growth of Supermassive Black Holes Based on the Intrinsic Scatter in theMbhâ€ifsphRelation. Astrophysical Journal, 2005, 634, 910-920.	4.5	33

#	Article	IF	Citations
73	Determining the escape fraction of ionizing photons during reionization with the GRB-derived star formation rate. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2561-2571.	4.4	33
74	LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY. Astronomical Journal, 2013, 145, 23.	4.7	31
75	Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3659-3682.	4.4	31
76	Subtraction of point sources from interferometric radio images through an algebraic forward modelling scheme. Monthly Notices of the Royal Astronomical Society, 2011, 413, 411-422.	4.4	30
77	Calibrating the Galaxy Halo–Black Hole Relation Based on the Clustering of Quasars. Astrophysical Journal, 2005, 621, 95-103.	4.5	29
78	The size of the mid-IR emission region of a quasar inferred from microlensed images of Q2237+0305. Monthly Notices of the Royal Astronomical Society, 2002, 331, 1041-1052.	4.4	28
79	Intensity mapping cross-correlations: connecting the largest scales to galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3399-3410.	4.4	28
80	Simulated star formation rate functions at z $\hat{a}^{1/4}$ 4-7, and the role of feedback in high-z galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3490-3506.	4.4	27
81	A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoRO field. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4151-4175.	4.4	27
82	The impact of strong gravitational lensing on observed Lyman-break galaxy numbers at 4 â‰ছ â‰ছ in the GOODS and the XDF blank fields. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1224-1236.	4.4	26
83	A new MWA limit on the 21Âcm power spectrum at redshifts â^1⁄413–17. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4775-4790.	4.4	25
84	Subtraction of Bright Point Sources from Synthesis Images of the Epoch of Reionization. Publications of the Astronomical Society of Australia, 2011, 28, 46-57.	3.4	24
85	A Search for Hi21 cm Absorption toward the Highest Redshift (z ~ 5.2) Radio-loud Objects. Astronomical Journal, 2007, 133, 2841-2845.	4.7	23
86	Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies. Astrophysical Journal, 2017, 838, 68.	4.5	23
87	Smooth matter and source size in microlensing simulations of gravitationally lensed quasars. Monthly Notices of the Royal Astronomical Society, 2007, 381, 1591-1596.	4.4	21
88	The Relation between Star-Formation Rate and Stellar Mass of Galaxies at <i>>z</i> ~ 1–4. Publications of the Astronomical Society of Australia, 2016, 33, .	3.4	21
89	Application of the contouring method to extended microlensed sources. Monthly Notices of the Royal Astronomical Society, 1999, 306, 223-231.	4.4	20
90	A new layout optimization technique for interferometric arrays, applied to the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1781-1788.	4.4	20

#	Article	IF	Citations
91	The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1286-1301.	4.4	19
92	A predicted new population of UV-faint galaxies at z $\hat{a}\%^3$ 4. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1326-1336.	4.4	19
93	The stellar mass function and star formation rate–stellar mass relation of galaxies at zÂâ ¹ /4Â4–7. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3001-3021.	4.4	19
94	Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	19
95	Measuring the Size of Quasar Broadâ€Line Clouds through Timeâ€Delay Lightâ€Curve Anomalies of Gravitational Lenses. Astrophysical Journal, 2002, 577, 615-625.	4.5	19
96	Limits to Rest-frame Ultraviolet Emission from Far-infrared-luminous z \hat{A} â‰ $f\hat{A}$ 6 Quasar Hosts. Astrophysical Journal, 2020, 900, 21.	4.5	19
97	Cosmological Microlensing Statistics: Variability Rates for Quasars and Gammaâ€Ray Burst Afterglows and Implications for Macrolensing Magnification Bias and Flux Ratios. Astrophysical Journal, 2002, 575, 650-666.	4.5	18
98	Cosmic Variance in the Transparency of the Intergalactic Medium after Reionization. Astrophysical Journal, 2006, 646, 696-702.	4.5	18
99	Evidence for merger-driven activity in the clustering of high-redshift quasars. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1607-1619.	4.4	18
100	On the role of feedback in shaping the cosmic abundance and clustering of neutral atomic hydrogen in galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3366-3374.	4.4	17
101	Assessment of Ionospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array. Astrophysical Journal, 2018, 867, 15.	4.5	17
102	Interpretation of the OGLE Q2237+0305 microlensing light curve (1997-1999). Monthly Notices of the Royal Astronomical Society, 2000, 318, 1120-1130.	4.4	16
103	Simulated metal and H i absorption lines at the conclusion of reionization. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2494-2509.	4.4	16
104	The Murchison Widefield Array: solar science with the low frequency SKA Precursor. Journal of Physics: Conference Series, 2013, 440, 012033.	0.4	15
105	Dark matter annihilation in the first galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2840-2850.	4.4	15
106	DELAY SPECTRUM WITH PHASE-TRACKING ARRAYS: EXTRACTING THE H i POWER SPECTRUM FROM THE EPOCH OF REIONIZATION. Astrophysical Journal, 2016, 833, 213.	4.5	15
107	Detection of Gravitational Waves from the Coalescence of Population III Remnants with Advanced LIGO. Astrophysical Journal, 2004, 612, 597-601.	4.5	14
108	The H i mass function as a probe of photoionization feedback on low-mass galaxy formation. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2316-2326.	4.4	14

#	Article	IF	Citations
109	On the Probability Distribution of Cosmological Microlensing Optical Depths. Astrophysical Journal, 2002, 567, 18-30.	4.5	14
110	Epoch of reionization power spectrum limits from Murchison Widefield Array data targeted at EoR1 field. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5954-5971.	4.4	14
111	Smooth boundaries to cosmological H II regions from galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2007, 374, 960-964.	4.4	12
112	The imprint of cosmic reionization on galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2007, 382, 921-936.	4.4	12
113	The shallow slope of thezâ ¹ /4 6 quasar luminosity function: limits from the lack of multiple-image gravitational lenses. Monthly Notices of the Royal Astronomical Society, 2004, 351, 1266-1276.	4.4	11
114	Modification of the 21-cm power spectrum by X-rays during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1106-1118.	4.4	11
115	What does the quasar luminosity function tell us about supermassive black hole evolution?. Monthly Notices of the Royal Astronomical Society, 2006, 372, 1681-1691.	4.4	10
116	Theoretical study of an LAE–C <scp>iv</scp> absorption pair at <i>z</i> Â=Â5.7. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 469, L53-L57.	3.3	9
117	The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 380-397.	4.4	9
118	The impact of $H\hat{a} \in f$ in galaxies on 21-cm intensity fluctuations during the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2009, 395, 311-318.	4.4	6
119	Dark matter annihilation in the circumgalactic medium at high redshifts. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3067-3079.	4.4	6
120	Mid-Infrared Imaging of the Einstein Cross QSO. Publications of the Astronomical Society of Australia, 2001, 18, 166-168.	3.4	5
121	The correlation between star formation and 21-cm emission during the reionization epoch. Monthly Notices of the Royal Astronomical Society, 0, 380, 1087-1097.	4.4	5
122	The growth of discs and bulges during hierarchical galaxy formation $\hat{a} \in \mathbb{C}$ II. Metallicity, stellar populations and dynamical evolution. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4133-4146.	4.4	5
123	Robust statistics towards detection of the 21Âcm signal from the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5766-5784.	4.4	4
124	A Strong-lensing Model for the WMDF JWST/GTO Very Rich Cluster A1489. Astrophysical Journal, 2020, 903, 137.	4.5	4
125	Constraints on the mass profile of the lens galaxy G2237+0305. Monthly Notices of the Royal Astronomical Society, 2002, 330, 575-582.	4.4	3
126	THE SHOCKING TRUTH: THE SMALL CONTRIBUTION TO HYDROGEN REIONIZATION FROM GRAVITATIONAL INFALL. Astrophysical Journal, 2011, 743, 173.	4.5	3

STUART WYITHE

#	Article	IF	CITATIONS
127	Constraining the $21\hat{a}\in\%$ cm brightness temperature of the IGM at $\langle i\rangle z\langle i\rangle = 6.6$ around LAEs with the murchison widefield array. Monthly Notices of the Royal Astronomical Society, 2021, 507, 772-780.	4.4	3
128	Detection of a possible superluminous supernova in the Epoch of Reionization. Science Bulletin, 2017, 62, 675-678.	9.0	2
129	A spectroscopically confirmed <i>z</i> Â=Â1.327 galaxy-scale deflector magnifying a <i>z</i> Ââ ¹ /4Â8 Lyman-break galaxy in the Brightest of Reionizing Galaxies survey. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3069-3082.	4.4	1