Aamir Farooq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/141620/publications.pdf Version: 2024-02-01

ΔΛΜΙΟ ΕΛΟΟΟΟ

#	Article	IF	CITATIONS
1	A comprehensive study on low-temperature oxidation chemistry of cyclohexane. II. Experimental and kinetic modeling investigation. Combustion and Flame, 2022, 235, 111550.	2.8	9
2	Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: A promising low carbon fuel blend. Renewable Energy, 2022, 181, 1353-1370.	4.3	92
3	Analysis of ignition temperature range and surrogate fuel requirements for GCI engine. Fuel, 2022, 312, 122978.	3.4	4
4	A comprehensive experimental and modeling study of n-propylcyclohexane oxidation. Combustion and Flame, 2022, 238, 111944.	2.8	10
5	Comparative Study of the Catalytic Oxidation of Hydrocarbons on Platinum and Palladium Wires and Nanoparticles. Energy & Fuels, 2022, 36, 2044-2057.	2.5	4
6	The kinetics of the reactions of Br atoms with the xylenes: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 4843-4858.	1.3	3
7	Reaction kinetics of phenylÂ+Âphenylacetylene at combustion-relevant intermediate temperatures. Combustion and Flame, 2022, 243, 112014.	2.8	4
8	A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism. Fuel Communications, 2022, 10, 100051.	2.0	46
9	Combustion chemistry of alkenes and alkadienes. Progress in Energy and Combustion Science, 2022, 90, 100983.	15.8	28
10	Reaction kinetics of 1,4-cyclohexadienes with OH radicals: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 7836-7847.	1.3	3
11	Laser sensors for energy systems and process industries: Perspectives and directions. Progress in Energy and Combustion Science, 2022, 91, 100997.	15.8	56
12	The effect of hydrogen bonding on the reactivity of OH radicals with prenol and isoprenol: a shock tube and multi-structural torsional variational transition state theory study. Physical Chemistry Chemical Physics, 2022, 24, 12601-12620.	1.3	6
13	Revisiting low temperature oxidation chemistry of n-heptane. Combustion and Flame, 2022, 242, 112177.	2.8	15
14	Kinetic insights into the reaction of hydroxyl radicals with 1,4-pentadiene: A combined experimental and theoretical study. Combustion and Flame, 2022, 241, 112153.	2.8	6
15	Laser-based selective BTEX sensing using deep neural networks. Optics Letters, 2022, 47, 3247.	1.7	11
16	Experimental and Kinetic Modeling Study of 1,3-Dioxolane Oxidation and Comparison with Dimethoxymethane. Energy & Fuels, 2022, 36, 7744-7754.	2.5	3
17	A theoretical kinetic study on the reaction of atomic bromine with toluene. International Journal of Chemical Kinetics, 2021, 53, 390-402.	1.0	3
18	Dual-camera high-speed imaging of the ignition modes of ethanol, methanol and n-hexane in a shock tube. Combustion and Flame, 2021, 224, 33-42.	2.8	12

#	Article	IF	CITATIONS
19	Experimental and kinetic modeling study of tetralin: A naphtheno-aromatic fuel for gasoline, jet and diesel surrogates. Proceedings of the Combustion Institute, 2021, 38, 641-649.	2.4	9
20	First aromatic ring formation by the radical-chain reaction of vinylacetylene and propargyl. Combustion and Flame, 2021, 225, 524-534.	2.8	22
21	Cavity-Enhanced Measurements of Benzene for Environmental Monitoring. IEEE Sensors Journal, 2021, 21, 3849-3859.	2.4	19
22	Ignition delay time and speciation of dibutyl ether at high pressures. Combustion and Flame, 2021, 223, 98-109.	2.8	22
23	Experimental and numerical study of polycyclic aromatic hydrocarbon formation in ethylene laminar co-flow diffusion flames. Fuel, 2021, 289, 119931.	3.4	11
24	A mid-infrared diagnostic for benzene using a tunable difference-frequency-generation laser. Proceedings of the Combustion Institute, 2021, 38, 1787-1796.	2.4	16
25	On the redox reactions between allyl radicals and NO. Proceedings of the Combustion Institute, 2021, 38, 967-976.	2.4	7
26	A high temperature shock tube study of phenyl recombination reaction using laser absorption spectroscopy. Proceedings of the Combustion Institute, 2021, 38, 919-927.	2.4	6
27	Kinetics and thermochemistry of cyclohexadienes reactions with hydroxyl radicals. Proceedings of the Combustion Institute, 2021, 38, 947-955.	2.4	4
28	Combustion behavior of ammonia blended with diethyl ether. Proceedings of the Combustion Institute, 2021, 38, 499-506.	2.4	88
29	High temperature branching ratio of acetaldehyde +OH reaction. Proceedings of the Combustion Institute, 2021, 38, 593-600.	2.4	5
30	Selective BTEX Measurements Using Deep Neural Networks. , 2021, , .		1
31	Yttrium stabilization and Pt addition to Pd/ZrO ₂ catalyst for the oxidation of methane in the presence of ethylene and water. RSC Advances, 2021, 11, 11910-11917.	1.7	4
32	Bending modes metrology in the 12-15 ŵm region. , 2021, , .		0
33	A widely tunable difference-frequency-generation laser for high-resolution spectroscopy in the 667–865 cm–1 range. , 2021, , .		3
34	Mid-infrared laser-based detection of benzene. , 2021, , .		5
35	Study on the helicoidal flow through cylindrical annuli with prescribed shear stresses. Results in Physics, 2021, 23, 103993.	2.0	4
36	Prediction of the Derived Cetane Number and Carbon/Hydrogen Ratio from Infrared Spectroscopic Data. Energy & Fuels, 2021, 35, 8141-8152.	2.5	21

#	Article	lF	CITATIONS
37	Experimental and kinetic modeling study of Âα-methyl-naphthalene pyrolysis: Part II. PAH formation. Combustion and Flame, 2021, 233, 111530.	2.8	5
38	Bending modes metrology beyond 12 μm. , 2021, , .		0
39	Rapid soot inception via α-alkynyl substitution of polycyclic aromatic hydrocarbons. Fuel, 2021, 295, 120580.	3.4	29
40	Experimental and kinetic modeling study of Âα-methyl-naphthalene pyrolysis: Part I. Formation of monocyclic aromatics and small species. Combustion and Flame, 2021, 233, 111587.	2.8	3
41	Continuous Butadiyne Addition to Propargyl: A Radical-Efficient Pathway for Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry Letters, 2021, 12, 8109-8114.	2.1	17
42	Detailed Chemical Kinetic Study of Acetaldehyde Oxidation and Its Interaction with NO _{<i>x</i>} . Energy & amp; Fuels, 2021, 35, 14963-14983.	2.5	9
43	Line-strengths, collisional coefficients and narrowing parameters in the ν3 band of methane: H2, He, N2, O2, Ar and CO2 collider effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107758.	1.1	1
44	A comprehensive combustion chemistry study of n-propylcyclohexane. Combustion and Flame, 2021, 233, 111576.	2.8	13
45	Experimental and computational studies of methanol and ethanol preignition behind reflected shock waves. Combustion and Flame, 2021, 234, 111621.	2.8	19
46	Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	44
47	Selective BTEX Sensing with Laser Absorption and DNNs. , 2021, , .		0
48	Comb-calibrated Spectroscopy in the 12â \in "15 m Region. , 2021, , .		0
49	Inception of Carbonaceous Nanostructures via Hydrogen-Abstraction Phenylacetylene-Addition Mechanism. Journal of the American Chemical Society, 2021, 143, 20710-20716.	6.6	12
50	Octane Prediction from Infrared Spectroscopic Data. Energy & amp; Fuels, 2020, 34, 817-826.	2.5	20
51	Monte-Carlo based laminar flame speed correlation for gasoline. Combustion and Flame, 2020, 222, 61-69.	2.8	10
52	Experimental and Kinetic Modeling Study of Laminar Flame Speed of Dimethoxymethane and Ammonia Blends. Energy & Fuels, 2020, 34, 14726-14740.	2.5	64
53	QCL-Based Dual-Comb Spectrometer for Multi-Species Measurements at High Temperatures and High Pressures. Sensors, 2020, 20, 3602.	2.1	15
54	Determination of absolute photoionization crossâ€sections of some aromatic hydrocarbons. Rapid Communications in Mass Spectrometry, 2020, 34, e8899.	0.7	18

#	Article	IF	CITATIONS
55	lgnition delay time measurements of diesel and gasoline blends. Combustion and Flame, 2020, 222, 460-475.	2.8	16
56	Optical frequency metrology in the bending modes region. Communications Physics, 2020, 3, .	2.0	11
57	Catalytic performance of Pd catalyst supported on Zr:Ce modified mesoporous silica for methane oxidation. Chemical Engineering Journal, 2020, 397, 125489.	6.6	25
58	Autoignition of diethyl ether and a diethyl ether/ethanol blend. Fuel, 2020, 279, 118553.	3.4	28
59	Simultaneous lateral and endwall high-speed visualization of ignition in a circular shock tube. Combustion and Flame, 2020, 214, 263-265.	2.8	16
60	Chemical kinetics of hydroxyl reactions with cyclopentadiene and indene. Combustion and Flame, 2020, 217, 48-56.	2.8	13
61	Combustion Diagnostics Using a Difference-Frequency-Generation Laser Tunable from 12.6 to 15 \hat{l} /4m. , 2020, , .		1
62	Cavity-Enhanced Measurements of Benzene for Environmental Monitoring. , 2020, , .		0
63	A shock tube kinetic study of allyl + allyl and allyl + OH recombination reactions at high temperatures. Proceedings of the Combustion Institute, 2019, 37, 135-143.	2.4	6
64	A shock tube kinetic study on the branching ratio of methanol +ÂOH reaction. Proceedings of the Combustion Institute, 2019, 37, 153-162.	2.4	14
65	On the reaction of OH radicals with C2 hydrocarbons. Proceedings of the Combustion Institute, 2019, 37, 213-219.	2.4	6
66	An IH-QCL based gas sensor for simultaneous detection of methane and acetylene. Proceedings of the Combustion Institute, 2019, 37, 1445-1452.	2.4	7
67	Ignition delay measurements of a low-octane gasoline blend, designed for gasoline compression ignition (GCI) engines. Proceedings of the Combustion Institute, 2019, 37, 171-178.	2.4	25
68	High temperature unimolecular decomposition of cyclopentanone. Proceedings of the Combustion Institute, 2019, 37, 267-273.	2.4	10
69	A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures. Proceedings of the Combustion Institute, 2019, 37, 205-211.	2.4	127
70	A 12.6 – 15 μm Mid-IR Source Based on Difference Frequency Generation in Orientation-Patterned GaAs. , 2019, , .		0
71	Intra-pulse H2O absorption diagnostic for temperature sensing in a rapid compression machine. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	4
72	Chemical kinetic study of triptane (2,2,3-trimethylbutane) as an anti-knock additive. Combustion and Flame, 2019, 210, 399-412.	2.8	3

#	Article	IF	CITATIONS
73	On the universality of ignition delay times of distillate fuels at high temperatures: A statistical approach. Combustion and Flame, 2019, 210, 145-158.	2.8	9
74	Ethanolic gasoline, a lignocellulosic advanced biofuel. Sustainable Energy and Fuels, 2019, 3, 409-421.	2.5	12
75	Electron density measurements in shock tube using microwave interferometry. Review of Scientific Instruments, 2019, 90, 054706.	0.6	5
76	A chemical kinetic modeling study of indene pyrolysis. Combustion and Flame, 2019, 206, 1-20.	2.8	52
77	Cyclic Ketones as Future Fuels: Reactivity with OH Radicals. Journal of Physical Chemistry A, 2019, 123, 4325-4332.	1.1	9
78	An extended hybrid chemistry framework for complex hydrocarbon fuels. Fuel, 2019, 251, 276-284.	3.4	20
79	An experimental study of indene pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry. Physical Chemistry Chemical Physics, 2019, 21, 5510-5520.	1.3	20
80	Insights into the Reactions of Hydroxyl Radical with Diolefins from Atmospheric to Combustion Environments. Journal of Physical Chemistry A, 2019, 123, 2261-2271.	1.1	14
81	An ANN based hybrid chemistry framework for complex fuels. Fuel, 2019, 241, 625-636.	3.4	39
82	Cavity-enhanced absorption sensor for carbon monoxide in a rapid compression machine. Proceedings of the Combustion Institute, 2019, 37, 1297-1304.	2.4	14
83	Three-stage heat release in n-heptane auto-ignition. Proceedings of the Combustion Institute, 2019, 37, 485-492.	2.4	44
84	Engine Combustion System Optimization Using CFD and Machine Learning: A Methodological Approach. , 2019, , .		16
85	Comb-calibrated sub-Doppler spectroscopy with an external-cavity quantum cascade laser at 77 μm. Optics Express, 2019, 27, 23785.	1.7	6
86	Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines. Fuel, 2018, 218, 203-212.	3.4	3
87	A minimalist functional group (MFG) approach for surrogate fuel formulation. Combustion and Flame, 2018, 192, 250-271.	2.8	71
88	The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate. Combustion and Flame, 2018, 193, 157-169.	2.8	20
89	Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser. Scientific Reports, 2018, 8, 1292.	1.6	17
90	A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets. Combustion Science and Technology, 2018, 190, 1218-1231.	1.2	13

#	Article	IF	CITATIONS
91	High accuracy line positions of the \hat{l} 1 fundamental band of 14 N 2 16 O. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 211, 172-178.	1.1	25
92	A widely-tunable and sensitive optical sensor for multi-species detection in the mid-IR. Measurement Science and Technology, 2018, 29, 015201.	1.4	1
93	Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines. Combustion and Flame, 2018, 189, 337-346.	2.8	29
94	Recent progress in gasoline surrogate fuels. Progress in Energy and Combustion Science, 2018, 65, 67-108.	15.8	302
95	Shock tube studies of ethanol preignition. Combustion and Flame, 2018, 198, 176-185.	2.8	42
96	An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combustion and Flame, 2018, 197, 423-438.	2.8	432
97	A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate. Physical Chemistry Chemical Physics, 2018, 20, 21280-21285.	1.3	13
98	Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine. Optics Express, 2018, 26, 14601.	1.7	10
99	Glycerol carbonate as a fuel additive for a sustainable future. Sustainable Energy and Fuels, 2018, 2, 2171-2178.	2.5	38
100	Autoignition studies of Liquefied Natural Gas (LNG) in a shock tube and a rapid compression machine. Fuel, 2018, 232, 423-430.	3.4	34
101	Intra-pulse Cavity Enhanced Measurements of Carbon Monoxide in a Rapid Compression Machine. , 2018, , .		0
102	Simultaneous measurement of methane and acetylene based on IH-QCL absorption sepctroscopy. , 2018, , .		0
103	New insights into methane-oxygen ion chemistry. Proceedings of the Combustion Institute, 2017, 36, 1213-1221.	2.4	25
104	An experimental and theoretical kinetic study of the reaction of OH radicals with tetrahydrofuran. Proceedings of the Combustion Institute, 2017, 36, 143-150.	2.4	31
105	H-Abstraction by OH from Large Branched Alkanes: Overall Rate Measurements and Site-Specific Tertiary Rate Calculations. Journal of Physical Chemistry A, 2017, 121, 927-937.	1.1	11
106	Ignition delay time measurements of primary reference fuel blends. Combustion and Flame, 2017, 178, 205-216.	2.8	80
107	A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. Combustion and Flame, 2017, 178, 111-134.	2.8	164
108	A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals. Physical Chemistry Chemical Physics, 2017, 19, 7147-7157.	1.3	15

#	Article	IF	CITATIONS
109	Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combustion and Flame, 2017, 183, 372-385.	2.8	47
110	Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena. Combustion Science and Technology, 2017, 189, 1138-1161.	1.2	26
111	Ignition delay time correlation of fuel blends based on Livengood-Wu description. Fuel, 2017, 209, 776-786.	3.4	26
112	Ignition studies of two low-octane gasolines. Combustion and Flame, 2017, 185, 152-159.	2.8	56
113	Autoignition characteristics of oxygenated gasolines. Combustion and Flame, 2017, 186, 114-128.	2.8	63
114	Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate. Journal of Physical Chemistry A, 2017, 121, 6304-6313.	1.1	22
115	Detection of shock-heated hydrogen peroxide (H2O2) by off-axis cavity-enhanced absorption spectroscopy (OA-CEAS). Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	18
116	A high temperature kinetic study for the thermal unimolecular decomposition of diethyl carbonate. Chemical Physics Letters, 2017, 684, 390-396.	1.2	6
117	A hierarchical method for Bayesian inference of rate parameters from shock tube data: Application to the study of the reaction of hydroxyl with 2-methylfuran. Combustion and Flame, 2017, 184, 55-67.	2.8	12
118	A shock tube study of C4–C6 straight chain alkenes + OH reactions. Proceedings of the Combustion Institute, 2017, 36, 289-298.	2.4	17
119	Simultaneous measurements of acetylene and soot during the pyrolysis of ethylene and benzene in a shock tube. Proceedings of the Combustion Institute, 2017, 36, 833-840.	2.4	17
120	Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster. Proceedings of the Combustion Institute, 2017, 36, 3515-3522.	2.4	21
121	Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames. Combustion Science and Technology, 2017, 189, 575-594.	1.2	15
122	A high-temperature shock tube kinetic study for the branching ratios of isobutene + OH reaction. Proceedings of the Combustion Institute, 2017, 36, 265-272.	2.4	21
123	Ignition delay measurements of light naphtha: A fully blended low octane fuel. Proceedings of the Combustion Institute, 2017, 36, 315-322.	2.4	46
124	On the high-temperature unimolecular decomposition of ethyl levulinate. Proceedings of the Combustion Institute, 2017, 36, 187-193.	2.4	11
125	Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode. Proceedings of the Combustion Institute, 2017, 36, 4453-4460.	2.4	39
126	Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy. , 2017, , .		0

#	Article	IF	CITATIONS
127	Mixing-structure relationship in jet-stirred reactors. Chemical Engineering Research and Design, 2016, 111, 461-464.	2.7	27
128	A Shock-Tube Study of the CO + OH Reaction Near the Low-Pressure Limit. Journal of Physical Chemistry A, 2016, 120, 3924-3928.	1.1	3
129	Quantum Cascade Laser Measurements of Line Intensities, N ₂ -, O ₂ - and Ar- Collisional Broadening Coefficients of N ₂ O in the ν ₃ Band Near 4.5 µm. Applied Spectroscopy, 2016, 70, 972-982.	1.2	6
130	Compositional effects on the ignition of FACE gasolines. Combustion and Flame, 2016, 169, 171-193.	2.8	174
131	Ignition studies of n-heptane/iso-octane/toluene blends. Combustion and Flame, 2016, 171, 223-233.	2.8	90
132	First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184, 297-307.	1.1	5
133	Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures. Journal of Physical Chemistry A, 2016, 120, 7998-8005.	1.1	4
134	High-temperature unimolecular decomposition of ethyl propionate. Chemical Physics Letters, 2016, 664, 184-190.	1.2	11
135	A chemical kinetic study of the reaction of hydroxyl with furans. Fuel, 2016, 166, 245-252.	3.4	12
136	A comprehensive experimental and modeling study of isobutene oxidation. Combustion and Flame, 2016, 167, 353-379.	2.8	282
137	Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetics, and Rate Rule Optimizations for 2-Methylhexane. Journal of Physical Chemistry A, 2016, 120, 2201-2217.	1.1	53
138	Shock tube/laser absorption measurements of methane, acetylene and ethylene during the pyrolysis of n-pentane and iso-pentane. Combustion and Flame, 2016, 164, 1-9.	2.8	27
139	On the controlling mechanism of the upper turnover states in the NTC regime. Combustion and Flame, 2016, 164, 294-302.	2.8	42
140	Temperature Sensor for RCM Studies Based on Intrapulse Absorption Spectroscopy. , 2016, , .		0
141	Propene concentration sensing for combustion gases using quantum-cascade laser absorption near 11Â1¼m. Applied Physics B: Lasers and Optics, 2015, 120, 317-327.	1.1	21
142	A mid-infrared absorption diagnostic for acetylene detection. Applied Physics B: Lasers and Optics, 2015, 120, 223-232.	1.1	31
143	An experimental and theoretical study on the kinetic isotope effect of C2H6 and C2D6 reaction with OH. Chemical Physics Letters, 2015, 641, 158-162.	1.2	7
144	Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures. Proceedings of the Combustion Institute, 2015, 35, 249-257.	2.4	138

#	Article	IF	CITATIONS
145	An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combustion and Flame, 2015, 162, 296-314.	2.8	270
146	Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study. Proceedings of the Combustion Institute, 2015, 35, 429-436.	2.4	28
147	Towards simultaneous calibration-free and ultra-fast sensing of temperature and species in the intrapulse mode. Proceedings of the Combustion Institute, 2015, 35, 3757-3764.	2.4	22
148	High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 155, 66-74.	1.1	27
149	Theoretical Study of the Reaction Kinetics of Atomic Bromine with Tetrahydropyran. Journal of Physical Chemistry A, 2015, 119, 933-942.	1.1	4
150	High-temperature rate constant measurements for OH + xylenes. Combustion and Flame, 2015, 162, 2348-2353.	2.8	11
151	High-Temperature Experimental and Theoretical Study of the Unimolecular Dissociation of 1,3,5-Trioxane. Journal of Physical Chemistry A, 2015, 119, 6594-6601.	1.1	12
152	Site-specific reaction rate constant measurements for various secondary and tertiary H-abstraction by OH radicals. Combustion and Flame, 2015, 162, 2034-2044.	2.8	22
153	A comprehensive experimental and modeling study of 2-methylbutanol combustion. Combustion and Flame, 2015, 162, 2166-2176.	2.8	30
154	Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy. Optics Express, 2015, 23, 7217.	1.7	16
155	Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling. Combustion and Flame, 2015, 162, 3971-3979.	2.8	41
156	A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times. Fuel, 2015, 160, 458-469.	3.4	80
157	A shock tube study of the branching ratios of propene + OH reaction. Physical Chemistry Chemical Physics, 2015, 17, 2421-2431.	1.3	35
158	Shock tube measurements of the rate constants for seven large alkanes + OH. Proceedings of the Combustion Institute, 2015, 35, 189-196.	2.4	28
159	A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture. Fuel, 2015, 140, 201-208.	3.4	41
160	Sensitive Diagnostics for Chemically Reacting Flows. , 2015, , .		0
161	Shock Tube Measurements of the Branching Ratios of Propene + OH -> Products. , 2014, , .		0

162 Ion Measurements in Premixed Methane-Oxygen Flames. , 2014, , .

#	Article	IF	CITATIONS
163	Applications of cw Quantum Cascade Laser near 8 $^{1\!\!\!/}\!\!\!4$ m in Gas Sensing Research. , 2014, , .		о
164	Ultra-fast and calibration-free temperature sensing in the intrapulse mode. Optics Letters, 2014, 39, 6620.	1.7	18
165	Quantitative mid-infrared spectra of allene and propyne from room to high temperatures. Journal of Molecular Spectroscopy, 2014, 305, 10-16.	0.4	19
166	Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133, 559-569.	1.1	26
167	A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one. Combustion and Flame, 2014, 161, 725-734.	2.8	59
168	A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f. Applied Physics B: Lasers and Optics, 2014, 116, 371-383.	1.1	51
169	Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules. Physical Chemistry Chemical Physics, 2014, 16, 12183-12193.	1.3	17
170	Measurement of the Rate of Hydrogen Peroxide Thermal Decomposition in a Shock Tube Using Quantum Cascade Laser Absorption Near 7.7 μm. International Journal of Chemical Kinetics, 2014, 46, 275-284.	1.0	30
171	Measurements of linestrengths, N2-, Ar-, He- and self-broadening coefficients of acetylene in the ν4+ν5 combination band using a cw quantum cascade laser. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 148, 1-12.	1.1	13
172	Intensities, broadening and narrowing parameters in the $\hat{1}/2$ 3 band of methane. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149, 241-252.	1.1	21
173	Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures. Journal of Molecular Spectroscopy, 2014, 303, 8-14.	0.4	36
174	A comprehensive combustion chemistry study of 2,5-dimethylhexane. Combustion and Flame, 2014, 161, 1444-1459.	2.8	88
175	Site-Specific Rate Constant Measurements for Primary and Secondary H- and D-Abstraction by OH Radicals: Propane and <i>n</i> -Butane. Journal of Physical Chemistry A, 2014, 118, 4652-4660.	1.1	15
176	A comparative study of the chemical kinetics of methyl and ethyl propanoate. Fuel, 2014, 134, 26-38.	3.4	38
177	Calibration-Free and Ultra-Fast Sensing of Temperature and Species in the Intrapulse Mode. , 2014, , .		1
178	Collection of Condensate Water: Global Potential and Water Quality Impacts. Water Resources Management, 2013, 27, 1351-1361.	1.9	30
179	Modelling of heating and evaporation of gasoline fuel droplets: A comparative analysis of approximations. Fuel, 2013, 111, 643-647.	3.4	26
180	Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 115, 1-12.	1.1	28

#	Article	IF	CITATIONS
181	A sensitivity study of the oxidation of compressed natural gas on platinum. Fuel, 2013, 113, 467-480.	3.4	4
182	Shock tube/laser absorption studies of the decomposition of methyl formate. Proceedings of the Combustion Institute, 2013, 34, 453-461.	2.4	30
183	Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis. Proceedings of the Combustion Institute, 2013, 34, 607-615.	2.4	39
184	Measurements of NH3 linestrengths and collisional broadening coefficients in N2, O2, CO2, and H2O near 1103.46cmâ^'1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 121, 56-68.	1.1	55
185	Shock tube studies of methyl butanoate pyrolysis with relevance to biodiesel. Combustion and Flame, 2012, 159, 3235-3241.	2.8	43
186	CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 ^{[1} /4m. Applied Physics B: Lasers and Optics, 2012, 107, 849-860.	1.1	145
187	Multi-species time-history measurements during n-dodecane oxidation behind reflected shock waves. Proceedings of the Combustion Institute, 2011, 33, 151-157.	2.4	54
188	H ₂ O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 µm. Measurement Science and Technology, 2011, 22, 125301.	1.4	35
189	A simplified model for bi-component droplet heating and evaporation. International Journal of Heat and Mass Transfer, 2010, 53, 4495-4505.	2.5	147
190	Multi-species time-history measurements during n-heptane oxidation behind reflected shock waves. Combustion and Flame, 2010, 157, 1899-1905.	2.8	57
191	High-pressure measurements of CO2 absorption near 2.7μm: Line mixing and finite duration collision effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 949-960.	1.1	33
192	Mulit-Species Measurements Behind Reflected Shock Waves in Hydrocarbons Using Laser Absorption. , 2010, , .		0
193	Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7Âμm. Applied Physics B: Lasers and Optics, 2009, 96, 161-173.	1.1	98
194	An experimental and computational study of methyl ester decomposition pathways using shock tubes. Proceedings of the Combustion Institute, 2009, 32, 247-253.	2.4	87
195	Measurements of CO_2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 27 1¼m. Applied Optics, 2009, 48, 6740.	2.1	52
196	Hydrogen Peroxide Decomposition Rate: A Shock Tube Study Using Tunable Laser Absorption of H ₂ O near 2.5 μm. Journal of Physical Chemistry A, 2009, 113, 12919-12925.	1.1	68
197	A diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube. , 2009, , 409-414.		0
198	CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7Âl¼m. Applied Physics B: Lasers and Optics, 2008, 90, 619-628.	1.1	118

#	Article	IF	CITATIONS
199	Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8nm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 132-143.	1.1	56
200	<i>In situ</i> combustion measurements of H ₂ O and temperature near 2.5 µm using tunable diode laser absorption. Measurement Science and Technology, 2008, 19, 075604.	1.4	87
201	Mid-Infrared Gas Sensing For Combustion Applications. , 2008, , .		0
202	Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube. Applied Physics B: Lasers and Optics, 2007, 89, 407-416.	1.1	94
203	Linear and nonlinear dynamics of a differentially heated slot under gravity modulation. Journal of Fluid Mechanics, 1996, 313, 1-38.	1.4	48
204	Streaming flows due to g-jitter-induced natural convection. Journal of Fluid Mechanics, 1994, 271, 351-378.	1.4	65
205	Symmetric Ethers as Bioderived Fuels: Reactivity with OH Radicals. Energy & Fuels, 0, , .	2.5	4
206	Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning. , 0, , .		36
207	On the HCCI Octane Boosting Effects of \hat{I}^3 -Valerolactone. , 0, , .		1