Juan José Delgado Jaén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1416140/publications.pdf Version: 2024-02-01

	57719	66879
7,105	44	78
citations	h-index	g-index
135	135	9630
docs citations	times ranked	citing authors
	7,105 citations 135 docs citations	7,105 44 citations h-index 135 135 docs citations 135 times ranked

#	Article	IF	CITATIONS
1	Exceptional Activity for Methane Combustion over Modular Pd@CeO ₂ Subunits on Functionalized Al ₂ O ₃ . Science, 2012, 337, 713-717.	6.0	842
2	Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 2015, 6, 6451.	5.8	325
3	CuO _{<i>x</i>} â^'TiO ₂ Photocatalysts for H ₂ Production from Ethanol and Glycerol Solutions. Journal of Physical Chemistry A, 2010, 114, 3916-3925.	1.1	239
4	A Nobleâ€Metalâ€Free Catalyst Derived from Niâ€Al Hydrotalcite for Hydrogen Generation from N ₂ H ₄ â‹H ₂ O Decomposition. Angewandte Chemie - International Edition, 2012, 51, 6191-6194.	7.2	222
5	Synthesis and photocatalytic application of visible-light active β -Fe 2 O 3 /g-C 3 N 4 hybrid nanocomposites. Applied Catalysis B: Environmental, 2016, 187, 171-180.	10.8	194
6	Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts. ACS Catalysis, 2014, 4, 2088-2096.	5.5	176
7	Nanostructured Cu/TiO ₂ Photocatalysts for H ₂ Production from Ethanol and Glycerol Aqueous Solutions ChemCatChem, 2011, 3, 574-577.	1.8	158
8	Nanocarbons in selective oxidative dehydrogenation reaction. Catalysis Today, 2005, 102-103, 110-114.	2.2	144
9	Surface modification of Ni/Al2O3 with Pt: Highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine. Journal of Catalysis, 2013, 298, 1-9.	3.1	137
10	The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. Journal of Catalysis, 2012, 292, 90-98.	3.1	136
11	Bifunctional Hybrid SiO ₂ Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties. Angewandte Chemie - International Edition, 2011, 50, 3290-3293.	7.2	127
12	Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Applied Catalysis A: General, 2013, 466, 9-20.	2.2	126
13	Gold supported on carbon nanotubes for the selective oxidation of glycerol. Journal of Catalysis, 2012, 285, 83-91.	3.1	107
14	Engineering titania nanostructure to tune and improve its photocatalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3966-3971.	3.3	106
15	Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. Journal of Catalysis, 2011, 281, 119-127.	3.1	101
16	Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst. Catalysis Today, 2017, 281, 319-326.	2.2	98
17	Selective oxidative dehydrogenation of ethane over SnO2-promoted NiO catalysts. Journal of Catalysis, 2012, 295, 104-114.	3.1	87
18	Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180, 148-154.	2.2	85

#	Article	IF	CITATIONS
19	Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Applied Catalysis B: Environmental, 2017, 217, 265-274.	10.8	82
20	Magnetic Nanoparticles-Templated Assembly of Protein Subunits: A New Platform for Carbohydrate-Based MRI Nanoprobes. Journal of the American Chemical Society, 2011, 133, 4889-4895.	6.6	79
21	Nonâ€Thermal Plasma Activation of Goldâ€Based Catalysts for Lowâ€Temperature Water–Gas Shift Catalysis. Angewandte Chemie - International Edition, 2017, 56, 5579-5583.	7.2	77
22	Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A: General, 2010, 381, 150-160.	2.2	74
23	3 D Characterization of Gold Nanoparticles Supported on Heavy Metal Oxide Catalysts by HAADFâ€STEM Electron Tomography. Angewandte Chemie - International Edition, 2009, 48, 5313-5315.	7.2	72
24	Optimization of tin dioxide nanosticks faceting for the improvement of palladium nanocluster epitaxy. Applied Physics Letters, 2002, 80, 329-331.	1.5	70
25	H2 production by selective photo-dehydrogenation of ethanol in gas and liquid phase on CuOx/TiO2 nanocomposites. RSC Advances, 2013, 3, 21776.	1.7	70
26	Mn-SBA15 catalysts prepared by impregnation: Influence of the manganese precursor. Applied Catalysis A: General, 2011, 400, 238-248.	2.2	69
27	Studies on bifunctional Fe(<scp>ii</scp>)-triazole spin crossover nanoparticles: time-dependent luminescence, surface grafting and the effect of a silica shell and hydrostatic pressure on the magnetic properties. Journal of Materials Chemistry C, 2015, 3, 7819-7829.	2.7	69
28	Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes. Catalysis Communications, 2011, 16, 64-69.	1.6	68
29	Immobilized carbon nanofibers as industrial catalyst for ODH reactions. Journal of Catalysis, 2006, 244, 126-129.	3.1	67
30	Highly Ordered Mesoporous Carbon as Catalyst for Oxidative Dehydrogenation of Ethylbenzene to Styrene. Chemistry - an Asian Journal, 2009, 4, 1108-1113.	1.7	65
31	Carbon Monoxide Oxidation Catalysed by Exotemplated Manganese Oxides. Catalysis Letters, 2010, 134, 217-227.	1.4	65
32	Synergistic effect of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of glycerol. Applied Catalysis B: Environmental, 2016, 197, 222-235.	10.8	62
33	A new approach to the ferritin iron core growth: influence of the H/L ratio on the core shape. Dalton Transactions, 2012, 41, 1320-1324.	1.6	55
34	Low-Temperature Selective Catalytic Reduction (SCR) of NO <i>_x</i> with <i>n</i> -Octane Using Solvent-Free Mechanochemically Prepared Ag/Al ₂ O ₃ Catalysts. ACS Catalysis, 2011, 1, 1257-1262.	5.5	54
35	VOCs combustion catalysed by platinum supported on manganese octahedral molecular sieves. Applied Catalysis B: Environmental, 2011, 110, 231-237.	10.8	54
36	Hot Electron Collection on Brookite Nanorods Lateral Facets for Plasmon-Enhanced Water Oxidation. ACS Catalysis, 2017, 7, 1270-1278.	5.5	53

#	Article	IF	CITATIONS
37	Sonosynthesis of gold nanoparticles from a geranium leaf extract. Ultrasonics Sonochemistry, 2014, 21, 1570-1577.	3.8	49
38	Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts. Journal of Catalysis, 2015, 330, 344-353.	3.1	49
39	Selective Oxidation of Glycerol Catalyzed by Rh/Activated Carbon: Importance of Support Surface Chemistry. Catalysis Letters, 2011, 141, 420-431.	1.4	48
40	Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts. Catalysis Today, 2015, 249, 199-203.	2.2	48
41	Supported carbon nanofibers for the fixed-bed synthesis of styrene. Carbon, 2006, 44, 809-812.	5.4	46
42	Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethylbenzene to styrene. Catalysis Today, 2010, 150, 49-54.	2.2	46
43	Pd, Pt, and Pt–Cu Catalysts Supported on Carbon Nanotube (CNT) for the Selective Oxidation of Glycerol in Alkaline and Base-Free Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 8548-8556.	1.8	46
44	Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using nanocrystalline cryptomelane composite catalysts. Journal of Molecular Catalysis A, 2008, 281, 107-112.	4.8	45
45	Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in CO oxidation: A systematic study of CO2-triggered carbonate inhibition. Journal of Catalysis, 2014, 316, 210-218.	3.1	45
46	Photocatalytic valorization of ethanol and glycerol over TiO2 polymorphs for sustainable hydrogen production. Applied Catalysis A: General, 2016, 518, 167-175.	2.2	45
47	Nanostructured Pd Pt nanoparticles: evidences of structure/performance relations in catalytic H2 production reactions. Applied Catalysis B: Environmental, 2018, 236, 88-98.	10.8	45
48	Deactivation and regeneration of ruthenium on silica in the liquid-phase hydrogenation of butan-2-one. Journal of Catalysis, 2009, 265, 80-88.	3.1	44
49	Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 2011, 17, 9494-9502.	1.7	44
50	Size, nanostructure, and composition dependence of bimetallic Au–Pd supported on ceria–zirconia mixed oxide catalysts for selective oxidation of benzyl alcohol. Journal of Catalysis, 2019, 375, 44-55.	3.1	43
51	Fully Reversible Metal Deactivation Effects in Gold/Ceria–Zirconia Catalysts: Role of the Redox State of the Support. Angewandte Chemie - International Edition, 2010, 49, 9744-9748.	7.2	42
52	Selective Oxidation of Glycerol Catalyzed by Gold Supported on Multiwalled Carbon Nanotubes with Different Surface Chemistries. Industrial & Engineering Chemistry Research, 2012, 51, 15884-15894.	1.8	42
53	Critical role of water in the direct oxidation of CO and hydrocarbons in diesel exhaust after treatment catalysis. Applied Catalysis B: Environmental, 2014, 147, 764-769.	10.8	42
54	Photocatalytic H2 production by ethanol photodehydrogenation: Effect of anatase/brookite nanocomposites composition. Inorganica Chimica Acta, 2015, 431, 197-205.	1.2	41

Juan José Delgado Jaén

#	Article	IF	CITATIONS
55	Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catalysis Today, 2017, 279, 244-251.	2.2	41
56	Reducible Support Effects in the Gas Phase Hydrogenation of <i>p</i> -Chloronitrobenzene over Gold. Journal of Physical Chemistry C, 2013, 117, 994-1005.	1.5	40
57	Selective hydrogenation of benzoic acid over Au supported on CeO2 and Ce0.62Zr0.38O2: Formation of benzyl alcohol. Journal of Catalysis, 2014, 317, 114-125.	3.1	39
58	Impact of Ce–Fe synergism on the catalytic behaviour of Au/CeO ₂ –FeO _x /Al ₂ O ₃ for pure H ₂ production. Catalysis Science and Technology, 2013, 3, 779-787.	2.1	38
59	Preparation and characterization of CeMnO composites with applications in catalytic wet oxidation processes. Surface and Interface Analysis, 2004, 36, 752-755.	0.8	36
60	Gold nanoparticles protected by fluorinated ligands for 19F MRI. Chemical Communications, 2013, 49, 8794.	2.2	36
61	Bridging the Gap between CO Adsorption Studies on Gold Model Surfaces and Supported Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 1981-1985.	7.2	35
62	Influence of pretreatment atmospheres on the performance of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for benzyl alcohol oxidation. Applied Catalysis A: General, 2016, 525, 145-157.	2.2	35
63	TiO2-SiO2 Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials. Nanomaterials, 2018, 8, 177.	1.9	35
64	Photocatalytic Hydrogen Production by Boron Modified TiO ₂ /Carbon Nitride Heterojunctions. ChemCatChem, 2019, 11, 6408-6416.	1.8	35
65	The role of the carbonaceous deposits in the Catalytic Wet Oxidation (CWO) of phenol. Catalysis Communications, 2006, 7, 639-643.	1.6	34
66	From synthetic to natural nanoparticles: monitoring the biodegradation of SPIO (P904) into ferritin by electron microscopy. Nanoscale, 2011, 3, 4597.	2.8	34
67	Catalytic Performance of Ni/CeO2/X-ZrO2 (X = Ca, Y) Catalysts in the Aqueous-Phase Reforming of Methanol. Nanomaterials, 2019, 9, 1582.	1.9	34
68	Mountâ€Etnaâ€Lavaâ€6upported Nanocarbons for Oxidative Dehydrogenation Reactions. Advanced Materials, 2008, 20, 3597-3600.	11.1	33
69	Surface Reduction Mechanism of Cerium–Gallium Mixed Oxides with Enhanced Redox Properties. Journal of Physical Chemistry C, 2013, 117, 8822-8831.	1.5	33
70	Selective Oxidation of Glycerol over Platinum-Based Catalysts Supported on Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2013, 52, 17390-17398.	1.8	33
71	Use of Short Time-on-Stream Attenuated Total Internal Reflection Infrared Spectroscopy To Probe Changes in Adsorption Geometry for Determination of Selectivity in the Hydrogenation of Citral. ACS Catalysis, 2014, 4, 2470-2478.	5.5	32
72	CO2 hydrogenation to methanol on Ga2O3-Pd/SiO2 catalysts: Dual oxide-metal sites or (bi)metallic surface sites?. Catalysis Today, 2021, 381, 154-162.	2.2	32

Juan José Delgado Jaén

#	Article	IF	CITATIONS
73	Gold Catalysts Supported on Cerium–Gallium Mixed Oxide for the Carbon Monoxide Oxidation and Water Gas Shift Reaction. Topics in Catalysis, 2011, 54, 201-209.	1.3	31
74	Stacked wire-mesh monoliths for VOCs combustion: Effect of the mesh-opening in the catalytic performance. Catalysis Today, 2017, 296, 76-83.	2.2	31
75	Synthesis of palladium-rhodium bimetallic nanoparticles for formic acid dehydrogenation. Journal of Energy Chemistry, 2021, 52, 301-309.	7.1	31
76	The role of rhodium in the mechanism of the water–gas shift over zirconia supported iron oxide. Journal of Catalysis, 2014, 313, 34-45.	3.1	30
77	Ex-Solution Synthesis of Sub-5-nm FeO _{<i>x</i>} Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 6092-6097.	2.4	30
78	Imaging Nanostructural Modifications Induced by Electronic Metalâ^'Support Interaction Effects at Au Cerium-Based Oxide Nanointerfaces. ACS Nano, 2012, 6, 6812-6820.	7.3	29
79	CO Oxidation over Bimetallic Au–Pd Supported on Ceria–Zirconia Catalysts: Effects of Oxidation Temperature and Au:Pd Molar Ratio. Catalysis Letters, 2016, 146, 144-156.	1.4	29
80	Activation processes of highly ordered carbon nanofibers in the oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2012, 186, 93-98.	2.2	28
81	A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob) Tj ETQq1 1 0.784	4314.rgBT 1.7	/Oyerlock 10
82	Investigation by Means of H2 Adsorption, Diffraction, and Electron Microscopy Techniques of a Cerium/Terbium Mixed Oxide Supported on a Lanthana-Modified Alumina. Chemistry of Materials, 2002, 14, 844-850.	3.2	26
83	Tuning operational conditions for efficient NOx storage and reduction over a Pt–Ba/Al2O3 monolith catalyst. Applied Catalysis B: Environmental, 2010, 96, 329-337.	10.8	26
84	Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation. Catalysis Today, 2012, 180, 167-173.	2.2	26
85	Performance of NiO and Ni–Nb–O active phases during the ethane ammoxidation into acetonitrile. Catalysis Science and Technology, 2013, 3, 3173.	2.1	26
86	Application of halohydrocarbons for the re-dispersion of gold particles. Catalysis Science and Technology, 2014, 4, 729.	2.1	26
87	Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti ₂ AlC MAX Phase. ChemSusChem, 2020, 13, 6401-6408.	3.6	26
88	Deactivation of Pt/MnOx–CeO2 catalysts for the catalytic wet oxidation of phenol: Formation of carbonaceous deposits and leaching of manganese. Catalysis Today, 2010, 154, 195-201.	2.2	25
89	Facile Synthesis of Ultrathin AuCu Dimetallic Nanowire Networks. European Journal of Inorganic Chemistry, 2012, 2012, 2700-2706.	1.0	25
90	The effect of reaction conditions on the apparent deactivation of Ce–Zr mixed oxides for the catalytic wet oxidation of phenol. Catalysis Today, 2012, 180, 25-33.	2.2	25

#	Article	IF	CITATIONS
91	A Novel Catalyst for Synthesis of Styrene: Carbon Nanofibers Immobilized on Activated Carbon. Journal of Nanoscience and Nanotechnology, 2007, 7, 3495-3501.	0.9	24
92	CO Oxidation Activity of a Au/Ceria-Zirconia Catalyst Prepared by Deposition–Precipitation with Urea. Topics in Catalysis, 2011, 54, 931-940.	1.3	23
93	Resinâ€Derived Hierarchical Porous Carbon Spheres with High Catalytic Performance in the Oxidative Dehydrogenation of Ethylbenzene. ChemSusChem, 2012, 5, 687-693.	3.6	23
94	Structure transformations and reducibility of nanocrystalline Ce1â^'xYbxO2â^'(x/2) mixed oxides. Catalysis Today, 2012, 187, 56-64.	2.2	22
95	Nano-structural investigation of Ag/Al2O3 catalyst for selective removal of O2 with excess H2 in the presence of C2H4. Applied Catalysis A: General, 2011, 391, 187-193.	2.2	21
96	Preferential oxidation of CO in the presence of excess of hydrogen on Ru/Al2O3 catalyst: Promoting effect of ceria–terbia mixed oxide. Journal of Catalysis, 2013, 299, 272-283.	3.1	21
97	Viability of Au/CeO ₂ –ZnO/Al ₂ O ₃ Catalysts for Pure Hydrogen Production by the Water–Gas Shift Reaction. ChemCatChem, 2014, 6, 1401-1409.	1.8	21
98	Influence of the Surface Chemistry of Multiwalled Carbon Nanotubes on the Selective Conversion of Cellulose into Sorbitol. ChemCatChem, 2017, 9, 888-896.	1.8	19
99	Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies. Sensors, 2013, 13, 4979-5007.	2.1	18
100	Activation of Alkanes by Goldâ€Modified Lanthanum Oxide. ChemCatChem, 2011, 3, 394-398.	1.8	17
101	Analytical determination of the reducing and stabilization agents present in different Zostera noltii extracts used for the biosynthesis of gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2018, 179, 32-38.	1.7	17
102	Selective Oxidation of Veratryl Alcohol over Au-Pd/Ce0.62Zr0.38O2 Catalysts Synthesized by Sol-Immobilization: Effect of Au:Pd Molar Ratio. Nanomaterials, 2018, 8, 669.	1.9	17
103	Highly Active Ce- and Mg-Promoted Ni Catalysts Supported on Cellulose-Derived Carbon for Low-Temperature CO ₂ Methanation. Energy & Fuels, 2021, 35, 17212-17224.	2.5	17
104	Contributions of Electron Microscopy to Understanding CO Adsorption on Powder Au/Ceria–Zirconia Catalysts. Chemistry - A European Journal, 2010, 16, 9536-9543.	1.7	16
105	Electron Microscopy Investigations of Nanostructured Ce/Mn Oxides for Catalytic Wet Oxidation. Journal of Physical Chemistry C, 2010, 114, 8981-8991.	1.5	16
106	Advanced Electron Microscopy Investigation of Ceria–Zirconiaâ€Based Catalysts. ChemCatChem, 2011, 3, 1015-1027.	1.8	16
107	Enhancing activity, selectivity and stability of palladium catalysts in formic acid decomposition: Effect of support functionalization. Catalysis Today, 2021, 382, 61-70.	2.2	16
108	Photophysical properties of [Ir(tpy)2]3+-doped silica nanoparticles and synthesis of a colour-tunable material based on an Ir(core)–Eu(shell) derivative. Journal of Materials Chemistry C, 2013, 1, 3808.	2.7	15

#	Article	IF	CITATIONS
109	Molybdenum Oxide Supported on Ti ₃ AlC ₂ is an Active Reverse Water–Gas Shift Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 4957-4966.	3.2	15
110	Physicochemical properties of nanostructured Pd/lanthanide-doped ceria spheres with high catalytic activity for CH ₄ combustion. Journal of Materials Chemistry A, 2018, 6, 7488-7499.	5.2	14
111	Investigations of Carbon Nitride-Supported Mn3O4 Oxide Nanoparticles for ORR. Catalysts, 2020, 10, 1289.	1.6	14
112	Critical Influence of Redox Pretreatments on the CO Oxidation Activity of BaFeO3â^îî′ Perovskites: An in-Depth Atomic-Scale Analysis by Aberration-Corrected and in Situ Diffraction Techniques. ACS Catalysis, 2017, 7, 8653-8663.	5.5	13
113	Biosynthesis of uniform ultra-small gold nanoparticles by aged Dracaena Draco L extracts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123744.	2.3	13
114	Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method. Journal of Magnetism and Magnetic Materials, 2012, 324, 4011-4018.	1.0	12
115	Water as solvent in the liquid-phase selective hydrogenation of crotonaldehyde to crotyl alcohol over Pt/ZnO: A factorial design approach. Applied Catalysis B: Environmental, 2014, 154-155, 369-378.	10.8	12
116	Manganese cryptomelane-type oxides: A thermo-kinetic and morphological study. Applied Surface Science, 2008, 254, 3006-3013.	3.1	11
117	Nonâ€Thermal Plasma Activation of Goldâ€Based Catalysts for Lowâ€Temperature Water–Gas Shift Catalysis. Angewandte Chemie, 2017, 129, 5671-5675.	1.6	11
118	Fibrous MnO ₂ Nanoparticles with (2 × 2) Tunnel Structures. Catalytic Activity in the Total Oxidation of Volatile Organic Compounds. Journal of Nanoscience and Nanotechnology, 2009, 9, 3837-3842.	0.9	10
119	Sustainable photocatalytic synthesis of benzimidazoles. Inorganica Chimica Acta, 2021, 520, 120289.	1.2	10
120	Recent Progress in Chemical Characterization of Supported Gold Catalysts: CO Adsorption on Au/Ceria–Zirconia. Chemistry Letters, 2011, 40, 1210-1216.	0.7	9
121	A facile one-pot hydrothermal synthesis as an efficient method to modulate the potassium content of cryptomelane and its effects on the redox and catalytic properties. Chinese Journal of Catalysis, 2019, 40, 940-952.	6.9	9
122	Spectroscopic Ellipsometry Study on Tuning the Electrical and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition. ACS Applied Electronic Materials, 2022, 4, 925-935.	2.0	9
123	Dramatic effect of redox pre-treatments on the CO oxidation activity of Au/Ce0.50Tb0.12Zr0.38O2Ⱂx catalysts prepared by deposition–precipitation with urea: a nano-analytical and nano-structural study. Chemical Communications, 2013, 49, 6722.	2.2	7
124	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. Applied Sciences (Switzerland), 2021, 11, 8462.	1.3	7
125	Influence of the noble metal on the properties as oxygen exchanger of Rh/LnOx systems (Ln: Ce,Tb): Application of the oxygen buffering capacity (OBC) technique. Journal of Alloys and Compounds, 2002, 344, 347-351.	2.8	6
126	Photocatalytic Production of Hydrogen Over Tailored Cu-Embedded TiO ₂ . Nanoscience and Nanotechnology Letters, 2009, 1, 128-133.	0.4	6

#	Article	IF	CITATIONS
127	Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance. ACS Catalysis, 2021, 11, 15026-15039.	5.5	5
128	Surface Diels–Alder adducts on multilayer graphene for the generation of edge-enriched single-atom FeN ₄ sites for ORR and OER electrocatalysis. Sustainable Energy and Fuels, 2022, 6, 1603-1615.	2.5	3
129	UNDERSTANDING CERIA-BASED CATALYTIC MATERIALS: AN OVERVIEW OF RECENT PROGRESS. Catalytic Science Series, 2013, , 47-138.	0.6	2
130	SerafÃn Bernal: Profile of an excellent professor. Catalysis Today, 2012, 180, 1.	2.2	0
131	How Is the Personality of Facebook Customers?. Advances in Business Strategy and Competitive Advantage Book Series, 2017, , 191-229.	0.2	0
132	Highly active and stable Co (Co3O4)_Sm2O3 nano-crystallites derived from Sm2Co7 and SmCo5 intermetallic compounds in NH3 synthesis and CO2 conversion. Catalysis Science and Technology, 0, , .	2.1	0