Zhongqi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1415874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rice organs concentrate cadmium by chelation of amino acids containing dicarboxyl groups and enhance risks to human and environmental health in Cd-contaminated areas. Journal of Hazardous Materials, 2022, 426, 128130.	12.4	16
2	Citric acid inhibits Cd uptake by improving the preferential transport of Mn and triggering the defense response of amino acids in grains. Ecotoxicology and Environmental Safety, 2021, 211, 111921.	6.0	23
3	Foliar application of the sulfhydryl compound 2,3-dimercaptosuccinic acid inhibits cadmium, lead, and arsenic accumulation in rice grains by promoting heavy metal immobilization in flag leaves. Environmental Pollution, 2021, 285, 117355.	7.5	21
4	Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice. Environmental Pollution, 2020, 257, 113496.	7.5	50
5	Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland. Environmental Pollution, 2020, 262, 114236.	7.5	39
6	Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium. Chemosphere, 2020, 252, 126603.	8.2	40
7	Rice vegetative organs alleviate cadmium toxicity by altering the chemical forms of cadmium and increasing the ratio of calcium to manganese. Ecotoxicology and Environmental Safety, 2019, 184, 109640.	6.0	17
8	Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environmental Toxicology and Pharmacology, 2019, 72, 103265.	4.0	32
9	Gadolinium inhibits cadmium transport by blocking non-selective cation channels in rice seedlings. Ecotoxicology and Environmental Safety, 2019, 179, 160-166.	6.0	22
10	N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere, 2018, 193, 8-16.	8.2	187
11	Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environmental Science and Pollution Research, 2018, 25, 2361-2368.	5.3	120
12	Complete genome sequence of soil actinobacteria <i>Streptomyces cavourensis</i> TJ430. Journal of Basic Microbiology, 2018, 58, 1083-1090.	3.3	3
13	Modeling uptake of cadmium from solution outside of root to cell wall of shoot in rice seedling. Plant Growth Regulation, 2017, 82, 11-20.	3.4	20
14	Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil. Science of the Total Environment, 2017, 579, 1282-1288.	8.0	81
15	Adsorption Properties of Nano-MnO2–Biochar Composites for Copper in Aqueous Solution. Molecules, 2017, 22, 173.	3.8	81
16	Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole. Environmental Pollution, 2016, 214, 142-148.	7.5	73
17	One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. Journal of Environmental Management, 2016, 176, 61-68.	7.8	172
18	Effect of humic acid (HA) on sulfonamide sorption by biochars. Environmental Pollution, 2015, 204, 306-312.	7.5	118

#	Article	IF	CITATIONS
19	Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicology and Environmental Safety, 2014, 106, 226-231.	6.0	190