List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1415615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen vacancies in Co3O4 promote CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 300, 120729.	20.2	105
2	Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions. Nature Communications, 2022, 13, 475.	12.8	47
3	Nitrogen vacancies in polymeric carbon nitrides promote CO2 photoreduction. Journal of Catalysis, 2022, 409, 12-23.	6.2	23
4	Pickering Droplet-Derived Silica Microreactors with a Biomimetic Aqueous Environment for Continuous-Flow Enzymatic Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 662-670.	6.7	5
5	Lightâ€Induced Synthesis of Oxygenâ€Vacancyâ€Functionalized Ni(OH) ₂ Nanosheets for Highly Selective CO ₂ Reduction. ChemSusChem, 2022, 15, .	6.8	13
6	Hydrogen-Bonded Aggregates Featuring <i>n</i> → π* Electronic Transition for Efficient Visible-Light-Responsive Photocatalysis. ACS Catalysis, 2022, 12, 6276-6284.	11.2	11
7	Tri-templating Synthesis of Multilevel Mesoporous Silica Microspheres with a Complex Interior Structure for Efficient CO ₂ Capture and Catalysis. Langmuir, 2022, 38, 9421-9430.	3.5	3
8	Deep eutectic solvents as non-traditionally multifunctional media for the desulfurization process of fuel oil. Physical Chemistry Chemical Physics, 2021, 23, 785-805.	2.8	21
9	Mesoporous RhRu Nanosponges with Enhanced Water Dissociation toward Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 5052-5060.	8.0	30
10	One-Step Synthesis of Solid–Liquid Composite Microsphere for CO ₂ Capture. ACS Applied Materials & Interfaces, 2021, 13, 5814-5822.	8.0	14
11	Highly Selective Catalysis at the Liquid–Liquid Interface Microregion. ACS Catalysis, 2021, 11, 1485-1494.	11.2	34
12	A semi-crystalline carbonaceous structure as a wide-spectrum-responsive photocatalyst for efficient redox catalysis. Chemical Communications, 2021, 57, 5086-5089.	4.1	4
13	A liquid marble method for synthesizing large-sized carbon microspheres with controlled interior structures. Carbon, 2021, 179, 541-553.	10.3	3
14	Tandem Catalysis of Direct CO ₂ Hydrogenation to Higher Alcohols. ACS Catalysis, 2021, 11, 8978-8984.	11.2	42
15	Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12, 4968.	12.8	43
16	Metal-Nanoparticles-Loaded Ultrathin g-C ₃ N ₄ Nanosheets at Liquid–Liquid Interfaces for Enhanced Biphasic Catalysis. ACS Applied Materials & Interfaces, 2021, 13, 47236-47243.	8.0	20
17	Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light. Applied Catalysis B: Environmental, 2021, 297, 120496.	20.2	31
18	Pickering-Droplet-Derived MOF Microreactors for Continuous-Flow Biocatalysis with Size Selectivity. Journal of the American Chemical Society, 2021, 143, 16641-16652.	13.7	45

#	Article	IF	CITATIONS
19	Widely Adaptable Oilâ€inâ€Water Gel Emulsions Stabilized by an Amphiphilic Hydrogelator Derived from Dehydroabietic Acid. Angewandte Chemie, 2020, 132, 647-651.	2.0	7
20	Widely Adaptable Oilâ€inâ€Water Gel Emulsions Stabilized by an Amphiphilic Hydrogelator Derived from Dehydroabietic Acid. Angewandte Chemie - International Edition, 2020, 59, 637-641.	13.8	33
21	Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367, 193-197.	12.6	470
22	Rational electronic control of carbon dioxide reduction over cobalt oxide. Journal of Catalysis, 2020, 387, 119-128.	6.2	20
23	Reversible Switching of the Amphiphilicity of Organic–Inorganic Hybrids by Adsorption–Desorption Manipulation. Journal of Physical Chemistry C, 2019, 123, 21097-21102.	3.1	1
24	Pickering emulsion droplets hosting ionic liquid catalysts for continuous-flow cyanosilylation reaction. Green Chemistry, 2019, 21, 627-633.	9.0	34
25	Biphasic biocatalysis using a CO ₂ -switchable Pickering emulsion. Green Chemistry, 2019, 21, 4062-4068.	9.0	70
26	Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture. Nature Communications, 2019, 10, 1854.	12.8	52
27	One-step fabrication of Ni-embedded hierarchically-porous carbon microspheres for levulinic acid hydrogenation. Chemical Engineering Journal, 2019, 369, 386-393.	12.7	53
28	Microspherical nitrogen-doped carbon nanotube assembly derived from Pickering droplets. Carbon, 2019, 148, 124-133.	10.3	12
29	Pickering Emulsion-Derived Liquid–Solid Hybrid Catalyst for Bridging Homogeneous and Heterogeneous Catalysis. Journal of the American Chemical Society, 2019, 141, 5220-5230.	13.7	93
30	Incorporation of flexible ionic polymers into a Lewis acid-functionalized mesoporous silica for cooperative conversion of CO2 to cyclic carbonates. Chinese Journal of Catalysis, 2019, 40, 1874-1883.	14.0	18
31	A pH-responsive TiO2-based Pickering emulsion system for in situ catalyst recycling. Chinese Chemical Letters, 2018, 29, 778-782.	9.0	28
32	Enhancing reaction rate in a Pickering emulsion system with natural magnetotactic bacteria as nanoscale magnetic stirring bars. Chemical Science, 2018, 9, 2575-2580.	7.4	34
33	Facile Preparation of Ag-Coated Superhydrophobic/Superoleophilic Mesh for Efficient Oil/Water Separation with Excellent Corrosion Resistance. Langmuir, 2018, 34, 6922-6929.	3.5	59
34	Construction of a chiral macromolecular catalyst in hollow silica nanoreactors for efficient and recyclable asymmetric catalysis. Catalysis Science and Technology, 2018, 8, 2304-2311.	4.1	7
35	A reinforced Pickering emulsion for cascade reactions. Chemical Communications, 2018, 54, 13014-13017.	4.1	25
36	lodide-mediated templating synthesis of highly porous rhodium nanospheres for enhanced dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2018, 6, 24166-24174.	10.3	26

#	Article	IF	CITATIONS
37	Tuning Biphasic Catalysis Reaction with a Pickering Emulsion Strategy Exemplified by Selective Hydrogenation of Benzene. ChemCatChem, 2018, 10, 5224-5230.	3.7	33
38	Palladium/Graphitic Carbon Nitride (gâ€C ₃ N ₄) Stabilized Emulsion Microreactor as a Store for Hydrogen from Ammonia Borane for Use in Alkene Hydrogenation. Angewandte Chemie, 2018, 130, 15073-15077.	2.0	18
39	Janus N-Doped Carbon@Silica Hollow Spheres as Multifunctional Amphiphilic Nanoreactors for Base-Free Aerobic Oxidation of Alcohols in Water. ACS Applied Materials & Interfaces, 2018, 10, 33474-33483.	8.0	65
40	Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO2 capture and catalysis. NPG Asia Materials, 2018, 10, 899-911.	7.9	34
41	Palladium/Graphitic Carbon Nitride (gâ€C ₃ N ₄) Stabilized Emulsion Microreactor as a Store for Hydrogen from Ammonia Borane for Use in Alkene Hydrogenation. Angewandte Chemie - International Edition, 2018, 57, 14857-14861.	13.8	135
42	Surfactant Assembly within Pickering Emulsion Droplets for Fabrication of Interior‣tructured Mesoporous Carbon Microspheres. Angewandte Chemie, 2018, 130, 11065-11070.	2.0	22
43	Surfactant Assembly within Pickering Emulsion Droplets for Fabrication of Interior‣tructured Mesoporous Carbon Microspheres. Angewandte Chemie - International Edition, 2018, 57, 10899-10904.	13.8	65
44	Plasmonic Janus hybrids for the detection of small metabolites. Journal of Materials Chemistry B, 2018, 6, 7280-7287.	5.8	40
45	Janus mesoporous silica nanosheets with perpendicular mesochannels: affording highly accessible reaction interfaces for enhanced biphasic catalysis. Chemical Communications, 2018, 54, 10455-10458.	4.1	52
46	Direct Observation of Carbon Nitride-Stabilized Pickering Emulsions. Langmuir, 2018, 34, 10135-10143.	3.5	25
47	Tuning the Interfacial Activity of Mesoporous Silicas for Biphasic Interface Catalysis Reactions. ACS Applied Materials & Interfaces, 2017, 9, 8403-8412.	8.0	73
48	Growing a hydrophilic nanoporous shell on a hydrophobic catalyst interface for aqueous reactions with high reaction efficiency and in situ catalyst recycling. Journal of Materials Chemistry A, 2017, 5, 16162-16170.	10.3	37
49	Dumbbell‧haped Biâ€component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie, 2017, 129, 8579-8583.	2.0	34
50	Dumbbell‧haped Bi omponent Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie - International Edition, 2017, 56, 8459-8463.	13.8	204
51	Positional immobilization of Pd nanoparticles and enzymes in hierarchical yolk–shell@shell nanoreactors for tandem catalysis. Chemical Communications, 2017, 53, 7780-7783.	4.1	52
52	Flow Pickering Emulsion Interfaces Enhance Catalysis Efficiency and Selectivity for Cyclization of Citronellal. ChemSusChem, 2017, 10, 1989-1995.	6.8	37
53	In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics. Journal of Catalysis, 2017, 348, 212-222.	6.2	100
54	N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon, 2017, 114, 473-481.	10.3	148

#	Article	IF	CITATIONS
55	Semipermeable Organic–Inorganic Hybrid Microreactors for Highly Efficient and Size-Selective Asymmetric Catalysis. ACS Catalysis, 2017, 7, 6711-6718.	11.2	25
56	Synthesis of pH-Responsive Inorganic Janus Nanoparticles and Experimental Investigation of the Stability of Their Pickering Emulsions. Langmuir, 2017, 33, 10283-10290.	3.5	56
57	Rationally Turning the Interface Activity of Mesoporous Silicas for Preparing Pickering Foam and "Dry Waterâ€: Langmuir, 2017, 33, 9025-9033.	3.5	15
58	Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. Journal of the American Chemical Society, 2017, 139, 17387-17396.	13.7	130
59	N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes. Chinese Journal of Catalysis, 2017, 38, 1252-1260.	14.0	34
60	Pickering Emulsion as an Efficient Platform for Enzymatic Reactions without Stirring. ACS Sustainable Chemistry and Engineering, 2016, 4, 6838-6843.	6.7	107
61	Compartmentalized Droplets for Continuous Flow Liquid–Liquid Interface Catalysis. Journal of the American Chemical Society, 2016, 138, 10173-10183.	13.7	178
62	In Situ Surface Engineering of Mesoporous Silica Generates Interfacial Activity and Catalytic Acceleration Effect. ACS Omega, 2016, 1, 930-938.	3.5	10
63	Compartmentalization of Incompatible Reagents within Pickering Emulsion Droplets for One-Pot Cascade Reactions. Journal of the American Chemical Society, 2015, 137, 1362-1371.	13.7	212
64	Encapsulation of Hoveyda–Grubbs ^{2nd} Catalyst within Yolk–Shell Structured Silica for Olefin Metathesis. ACS Catalysis, 2015, 5, 2225-2231.	11.2	26
65	A pH-switched Pickering emulsion catalytic system: high reaction efficiency and facile catalyst recycling. Chemical Communications, 2015, 51, 7333-7336.	4.1	68
66	pH-Responsive Gas–Water–Solid Interface for Multiphase Catalysis. Journal of the American Chemical Society, 2015, 137, 15015-15025.	13.7	105
67	Pd nanoparticles embedded in the outershell of a mesoporous core–shell catalyst for phenol hydrogenation in pure water. RSC Advances, 2015, 5, 102811-102817.	3.6	18
68	Multifunctional mesoporous silica-supported palladium nanoparticles for selective phenol hydrogenation in the aqueous phase. Catalysis Science and Technology, 2015, 5, 572-577.	4.1	27
69	Pickeringâ€Emulsion Inversion Strategy for Separating and Recycling Nanoparticle Catalysts. ChemPhysChem, 2014, 15, 841-848.	2.1	27
70	Tuning the wettability of mesoporous silica for enhancing the catalysis efficiency of aqueous reactions. Chemical Communications, 2014, 50, 10045-10048.	4.1	56
71	Micrometerâ€Scale Mixing with Pickering Emulsions: Biphasic Reactions without Stirring. ChemSusChem, 2014, 7, 391-396.	6.8	79
72	Recycling Nanoparticle Catalysts without Separation Based on a Pickering Emulsion/Organic Biphasic System. ChemSusChem, 2014, 7, 1888-1900.	6.8	37

#	Article	IF	CITATIONS
73	Surface Active Nanoparticles for Interfacial Catalysis. , 2014, , 1-17.		ο
74	Pd nanoparticles confined in fluoro-functionalized yolk-shell-structured silica for olefin hydrogenation in water. Chinese Journal of Catalysis, 2013, 34, 1192-1200.	14.0	8
75	A Mesoporous Silica Nanocomposite Shuttle: pH-Triggered Phase Transfer between Oil and Water. Langmuir, 2013, 29, 6687-6696.	3.5	34
76	Encapsulation of an Olefin Metathesis Catalyst in the Nanocages of SBAâ€1: Facile Preparation, High Encapsulation Efficiency, and High Activity. ChemCatChem, 2013, 5, 2278-2287.	3.7	26
77	Hydrophobic Core/Hydrophilic Shell Structured Mesoporous Silica Nanospheres: Enhanced Adsorption of Organic Compounds from Water. Langmuir, 2013, 29, 1228-1237.	3.5	51
78	A Strategy for Separating and Recycling Solid Catalysts Based on the pHâ€Triggered Pickeringâ€Emulsion Inversion. Angewandte Chemie - International Edition, 2013, 52, 7455-7459.	13.8	197
79	A Fluorescence Turn-on Sensor for Cyanide Anion Based on Exciplex Signaling Mechanism. Chemistry Letters, 2012, 41, 518-520.	1.3	11
80	Hydrophobic core–hydrophilic shell-structured catalysts: a general strategy for improving the reaction rate in water. Chemical Communications, 2012, 48, 11217.	4.1	34
81	Encapsulation of a catalytically active core with a nanoporous shell: a new strategy for designing size-selective catalysts. Journal of Materials Chemistry, 2012, 22, 9069.	6.7	29
82	Magnetic core–shell-structured nanoporous organosilica microspheres for the Suzuki–Miyaura coupling of aryl chlorides: improved catalytic activity and facile catalyst recovery. Journal of Materials Chemistry, 2012, 22, 6639.	6.7	44
83	Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols. Journal of Physical Chemistry C, 2012, 116, 6512-6519.	3.1	74
84	Encapsulation of chiral Fe(salan) in nanocages with different microenvironments for asymmetric sulfide oxidation. Physical Chemistry Chemical Physics, 2011, 13, 2504-2511.	2.8	45
85	One-pot preparation of magnetic N-heterocyclic carbene-functionalized silica nanoparticles for the Suzuki–Miyaura coupling of aryl chlorides: improved activity and facile catalyst recovery. Green Chemistry, 2011, 13, 1352.	9.0	99
86	Rationally designed palladium complexes on a bulky N-heterocyclic carbene-functionalized organosilica: an efficient solid catalyst for the Suzuki–Miyaura coupling of challenging aryl chlorides. Green Chemistry, 2011, 13, 2939.	9.0	44
87	Synthesis of a ferrocene-containing ordered mesoporous organosilica and its catalytic activity. Journal of Porous Materials, 2010, 17, 643-649.	2.6	14
88	Three-dimensional cubic mesoporous materials with a built-in N-heterocyclic carbene for Suzuki–Miyaura coupling of aryl chlorides and C(sp3)-chlorides. Journal of Catalysis, 2010, 276, 123-133.	6.2	54
89	Palladium nanoparticles confined in the nanocages of SBA-16: Enhanced recyclability for the aerobic oxidation of alcohols in water. Journal of Molecular Catalysis A, 2010, 331, 78-85.	4.8	85
90	Enhancement of catalytic performance in asymmetric transfer hydrogenation by microenvironment engineering of the nanocage. Chemical Communications, 2010, 46, 8145.	4.1	60

#	Article	IF	CITATIONS
91	Mesoporous Ethaneâ^'Silicas Functionalized with a Bulky N-Heterocyclic Carbene for Suzukiâ^'Miyaura Coupling of Aryl Chlorides and Benzyl Chlorides. Journal of Physical Chemistry C, 2010, 114, 22221-22229.	3.1	48
92	Palladium-guanidine complex immobilized on SBA-16: a highly active and recyclable catalyst for Suzuki coupling and alcohol oxidation. Green Chemistry, 2010, 12, 441.	9.0	105
93	Hoveyda–Grubbs catalyst confined in the nanocages of SBA-1: enhanced recyclability for olefin metathesis. Chemical Communications, 2010, 46, 8659.	4.1	55
94	The enantioselective cyanosilylation of aldehydes on a chiral VO(Salen) complex encapsulated in SBA-16. Green Chemistry, 2009, 11, 257-264.	9.0	76
95	N-Heterocyclic carbene palladium complex supported on ionic liquid-modified SBA-16: an efficient and highly recyclable catalyst for the Suzuki and Heck reactions. Green Chemistry, 2009, 11, 1184.	9.0	155
96	Asymmetric Catalysis with Metal Complexes in Nanoreactors. Chemistry - an Asian Journal, 2008, 3, 1214-1229.	3.3	79
97	Super-microporous organosilicas synthesized from well-defined nanobuilding units. Journal of Materials Chemistry, 2008, 18, 450-457.	6.7	35
98	Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage. Chemical Communications, 2007, , 1086.	4.1	106
99	Enhanced Cooperative Activation Effect in the Hydrolytic Kinetic Resolution of Epoxides on [Co(salen)] Catalysts Confined in Nanocages. Angewandte Chemie - International Edition, 2007, 46, 6861-6865.	13.8	196
100	Influence of surfactants on the parameters of polylactide nanocapsules containing insulin. Journal of Surfactants and Detergents, 2005, 8, 353-358.	2.1	27
101	Synthesis and Characterization of Mesoporous Manganese Oxides. Journal of Materials Synthesis and Processing, 2002, 10, 297-302.	0.3	8