
Xueliang Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1415247/publications.pdf Version: 2024-02-01

XUELIANC GE

#	Article	IF	CITATIONS
1	Organization of Ribosomes and Nucleoids in Escherichia coli Cells during Growth and in Quiescence. Journal of Biological Chemistry, 2014, 289, 11342-11352.	3.4	76
2	Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G. Nucleic Acids Research, 2012, 40, 2054-2064.	14.5	47
3	Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein. Journal of Molecular Evolution, 2017, 84, 69-84.	1.8	40
4	Selective translation by alternative bacterial ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19487-19496.	7.1	38
5	Loss of a single methylation in 23S rRNA delays 50S assembly at multiple late stages and impairs translation initiation and elongation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15609-15619.	7.1	27
6	Spatial Distribution and Ribosome-Binding Dynamics of EF-P in Live <i>EscherichiaÂcoli</i> . MBio, 2017, 8,	4.1	25
7	Micrococcin P1 – A bactericidal thiopeptide active against Mycobacterium tuberculosis. Tuberculosis, 2016, 100, 95-101.	1.9	23
8	Complementary charge-based interaction between the ribosomal-stalk protein L7/12 and IF2 is the key to rapid subunit association. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4649-4654.	7.1	21
9	The extended substrate recognition profile of the dog mast cell chymase reveals similarities and differences to the human chymase. International Immunology, 2010, 22, 421-431.	4.0	19
10	New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): possible endocrine-like function for microbes of the gut. Npj Biofilms and Microbiomes, 2017, 3, 31.	6.4	17
11	Cryo-EM structure of Mycobacterium smegmatis ribosome reveals two unidentified ribosomal proteins close to the functional centers. Protein and Cell, 2017, 9, 384-388.	11.0	16
12	Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. Phytomedicine, 2022, 100, 154073.	5.3	16
13	Inhibition of translation termination by small molecules targeting ribosomal release factors. Scientific Reports, 2019, 9, 15424.	3.3	6
14	GGQ methylation enhances both speed and accuracy of stop codon recognition by bacterial class-I release factors. Journal of Biological Chemistry, 2021, 296, 100681.	3.4	5
15	Collateral Toxicity Limits the Evolution of Bacterial Release Factor 2 toward Total Omnipotence. Molecular Biology and Evolution, 2020, 37, 2918-2930.	8.9	3