Antoniu Moldovan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1415054/publications.pdf

Version: 2024-02-01

361045 476904 1,158 83 20 29 citations h-index g-index papers 83 83 83 1331 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density. International Journal of Molecular Sciences, 2022, 23, 3247.	1.8	2
2	New Poly(N-isopropylacrylamide-butylacrylate) Copolymer Biointerfaces and Their Characteristic Influence on Cell Behavior In Vitro. International Journal of Molecular Sciences, 2022, 23, 3988.	1.8	3
3	Oxygen-vacancy induced ferroelectricity in nitrogen-doped nickel oxide. Journal of Applied Physics, 2022, 131, 164304.	1.1	3
4	Single-pass magnetic force microscopy technique, with topography feedback based on scanning polarization force microscopy. Applied Surface Science, 2022, 597, 153747.	3.1	3
5	Dy3+ and Tb3+ co-doped boro-phosphate sol–gel vitreous thin films. Journal of Sol-Gel Science and Technology, 2021, 97, 39-47.	1.1	3
6	A nanoscale continuous transition from the monoclinic to ferroelectric orthorhombic phase inside HfO ₂ nanocrystals stabilized by HfO ₂ capping and self-controlled Ge doping. Journal of Materials Chemistry C, 2021, 9, 12353-12366.	2.7	16
7	Laser Direct Writing via Two-Photon Polymerization of 3D Hierarchical Structures with Cells-Antiadhesive Properties. International Journal of Molecular Sciences, 2021, 22, 5653.	1.8	5
8	In Vitro Effect of Replicated Porous Polymeric Nano-MicroStructured Biointerfaces Characteristics on Macrophages Behavior. Nanomaterials, 2021, 11, 1913.	1.9	2
9	Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications. Nanomaterials, 2021, 11, 2286.	1.9	10
10	Influence of Laser-Designed Microstructure Density on Interface Characteristics and on Preliminary Responses of Epithelial Cells. Applied Sciences (Switzerland), 2020, 10, 6299.	1.3	0
11	Piezoelectric Hybrid Heterostructures PVDF/(Ba,Ca)(Zr,Ti)O3 Obtained by Laser Techniques. Coatings, 2020, 10, 1155.	1.2	2
12	Graphene bandgap induced by ferroelectric HfO ₂ doped with Zr (HfZrO). Nanotechnology, 2020, 31, 275202.	1.3	6
13	Induced Hydrophilicity and In Vitro Preliminary Osteoblast Response of Polyvinylidene Fluoride (PVDF) Coatings Obtained via MAPLE Deposition and Subsequent Thermal Treatment. Molecules, 2020, 25, 582.	1.7	22
14	3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation. Materials, 2019, 12, 2834.	1.3	15
15	Multiferroic (Nd,Fe)-doped PbTiO3 thin films obtained by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2
16	Laser processing of nanostructures: enhancing functional properties of lead-free perovskite nanostructures through chemical pressure and epitaxial strain., 2019,, 113-152.		0
17	Physical properties of the ferroelectric capacitors based on Al-doped HfO2 grown via Atomic Layer Deposition on Si. Applied Surface Science, 2019, 483, 324-333.	3.1	12
18	Multilayer protective coatings obtained by pulsed laser deposition. Applied Surface Science, 2019, 479, 1124-1131.	3.1	5

#	Article	IF	CITATIONS
19	In vitro behavior of human mesenchymal stem cells on poly(N-isopropylacrylamide) based biointerfaces obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 2018, 440, 712-724.	3.1	7
20	Impact of thickness variation on structural, dielectric and piezoelectric properties of (Ba,Ca)(Ti,Zr)O3 epitaxial thin films. Scientific Reports, 2018, 8, 2056.	1.6	28
21	MAPLE Assembled Acetylcholinesterase–Polyethylenimine Hybrid and Multilayered Interfaces for Toxic Gases Detection. Sensors, 2018, 18, 4265.	2.1	18
22	Rolling dopant and strain in Y-doped BiFeO3 epitaxial thin films for photoelectrochemical water splitting. Scientific Reports, 2018, 8, 15826.	1.6	14
23	Modification of W surfaces by exposure to hollow cathode plasmas. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	5
24	Tailored biodegradable triblock copolymer coatings obtained by MAPLE: a parametric study. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	1
25	Optical, structural and morphological characterization of CdS-doped sol-gel silico-phosphate films. , 2015, , .		1
26	High Permittivity (1 – <i>×</i>)Ba(Zr _{0.2} Ti _{0.8})O ₃ – <i>×</i> (Ba _{0.7} Ca _{0.3})TiO ₃ (<i>×</i>)Nanoscale Phase Fluctuations. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23984-23992.	4.0	23
27	Wetting properties of glycerol on silicon, native SiO ₂ , and bulk SiO ₂ by scanning polarization force microscopy. Journal of Adhesion Science and Technology, 2014, 28, 1277-1287.	1.4	9
28	Dermal cells distribution on laserâ€structured ormosils. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 129-138.	1.3	10
29	Antibacterial polymeric coatings grown by matrix assisted pulsed laser evaporation. Applied Physics A: Materials Science and Processing, 2013, 110, 895-902.	1.1	10
30	Electro-optic and dielectric properties of epitaxial Pb1 $\hat{a}^3x/2LaxZr0.2Ti0.8O3$ thin films obtained by pulsed laser deposition. Thin Solid Films, 2013, 541, 127-130.	0.8	4
31	Scanning polarization force microscopy investigation of contact angle and disjoining pressure of glycerol and sulfuric acid on highly oriented pyrolytic graphite and aluminum. EPJ Applied Physics, 2013, 64, 31302.	0.3	10
32	MAPLE deposited polymeric blends coatings for controlled drug delivery. , 2012, , .		3
33	MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight. Applied Surface Science, 2012, 258, 9302-9308.	3.1	18
34	Thermal, morphological and optical investigations of Cu(DAB)2 thin films produced by matrix-assisted pulsed laser evaporation and laser-induced forward transfer for sensor development. Thin Solid Films, 2012, 520, 3904-3909.	0.8	22
35	MAPLE deposition of PEG:PLGA thin films. Applied Physics A: Materials Science and Processing, 2012, 106, 197-205.	1.1	2
36	Biocompatible polymeric implants for controlled drug delivery produced by MAPLE. Applied Surface Science, 2011, 257, 10780-10788.	3.1	32

3

#	Article	IF	Citations
37	Single pulse near field study on a Co(3 nm)/Cu(6 nm)/Co(20 nm) multilayer structure by using a femtosecond laser. Applied Physics A: Materials Science and Processing, 2011, 104, 839-843.	1.1	0
38	High temperature growth of InN on various substrates by plasma-assisted pulsed laser deposition. Applied Surface Science, 2011, 257, 5312-5314.	3.1	5
39	Thin films of polymer blends deposited by matrix-assisted pulsed laser evaporation: Effects of blending ratios. Applied Surface Science, 2011, 257, 5259-5264.	3.1	16
40	Characterization of polymer thin films obtained by pulsed laser deposition. Applied Surface Science, 2011, 257, 5303-5307.	3.1	8
41	Properties of composite a-C:H/metal layers deposited by combined RF PECVD/magnetron sputtering techniques. Thin Solid Films, 2011, 519, 4054-4058.	0.8	3
42	Specificity of defects induced in silicon by RF-plasma hydrogenation. Applied Physics A: Materials Science and Processing, 2010, 98, 777-785.	1.1	12
43	Lead-free ferroelectric thin films obtained by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 747-751.	1.1	10
44	Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochimica Acta, 2010, 498, 81-91.	1.2	30
45	Skin Layer Defects in Si by Optimized Treatment in Hydrogen RF Plasma. Plasma Processes and Polymers, 2010, 7, 986-991.	1.6	2
46	Proton µâ€PIXE mapping, AFM imaging and size statistics of mineral granules in a dental composite. X-Ray Spectrometry, 2010, 39, 208-215.	0.9	2
47	Microfabrication of polystyrene microbead arrays by laser induced forward transfer. Journal of Applied Physics, 2010, 108, .	1.1	39
48	Growth of ZnO:Al thin films onto different substrates. , 2010, , .		3
49	Thin films of polymer blends for controlled drug delivery deposited by matrix-assisted pulsed laser evaporation. Applied Physics Letters, 2010, 96, 243702.	1.5	41
50	Polyisobutylene Thin Films Obtained by Matrix Assisted Pulsed Laser Evaporation for Sensors Applications. Sensor Letters, 2010, 8, 502-506.	0.4	13
51	Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation. Journal of Applied Physics, 2009, 106, 114908.	1.1	9
52	Effects of layer-by-layer deposition on the structural and optical characteristics of thin films. Proceedings of SPIE, 2009, , .	0.8	0
53	Crystallization study of sol–gel un-doped and Pd-doped TiO2 materials. Journal of Physics and Chemistry of Solids, 2008, 69, 2548-2554.	1.9	35
54	<title>Thin films of NdFeB deposited by PLD technique</title> ., 2007, , .		2

#	Article	IF	CITATIONS
55	Matrix assisted pulsed laser evaporation of pullulan tailor-made biomaterial thin films for controlled drug delivery systems. Journal of Physics: Conference Series, 2007, 59, 144-149.	0.3	8
56	p-type ZnO thin films grown by RF plasma beam assisted Pulsed Laser Deposition. Superlattices and Microstructures, 2007, 42, 79-84.	1.4	18
57	Structural and optical properties of the SiO2–P2O5 films obtained by sol–gel method. Thin Solid Films, 2007, 515, 6601-6605.	0.8	18
58	Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 2007, 253, 6476-6479.	3.1	34
59	Matrix assisted pulsed laser evaporation of poly(d,l-lactide) thin films for controlled-release drug systems. Applied Surface Science, 2007, 253, 7702-7706.	3.1	14
60	Thin films of polyaniline deposited by MAPLE technique. Applied Surface Science, 2007, 253, 7711-7714.	3.1	24
61	AFM and complementary XRD measurements of in situ grown YBCO films obtained by pulsed laser deposition. Applied Surface Science, 2007, 253, 8179-8183.	3.1	12
62	Morphological and structural studies of WOx thin films deposited by laser ablation. Applied Surface Science, 2007, 253, 8258-8262.	3.1	31
63	Preparation and characterization of titanium oxy-nitride thin films. Applied Surface Science, 2007, 253, 8210-8214.	3.1	79
64	SiO x -P2O5 filmsâ€"promising components in photonic structure. Optical and Quantum Electronics, 2007, 39, 511-521.	1.5	15
65	Thin films of advanced oxidic materials obtained by pulsed laser deposition. Applied Surface Science, 2007, 253, 8278-8281.	3.1	6
66	Pulsed laser deposition of doped skutterudite thin films. Applied Surface Science, 2007, 253, 8097-8101.	3.1	13
67	Thin films of NdFeB deposited by PLD technique. Applied Surface Science, 2007, 253, 8192-8196.	3.1	18
68	High-k dielectric oxides obtained by PLD as solution for gates dielectric in MOS devices. Applied Surface Science, 2007, 253, 8184-8191.	3.1	36
69	Monitorizing nitinol alloy surface reactions for biofouling studies. Applied Surface Science, 2007, 253, 7719-7723.	3.1	4
70	Nickel–titanium alloy: Cytotoxicity evaluation on microorganism culture. Applied Surface Science, 2006, 252, 4619-4624.	3.1	19
71	Laser deposition of cryoglobulin blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2006, 252, 4652-4655.	3.1	15
72	Pulsed laser deposition of perovskite relaxor ferroelectric thin films. Applied Surface Science, 2006, 252, 4553-4557.	3.1	25

#	Article	lF	CITATIONS
73	Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Applied Surface Science, 2006, 252, 4647-4651.	3.1	31
74	Functionalized polysiloxane thin films deposited by matrix-assisted pulsed laser evaporation for advanced chemical sensor applications. Applied Surface Science, 2006, 252, 4871-4876.	3.1	37
75	TiN/ZrN heterostructures deposition and characterisation. Surface and Coatings Technology, 2006, 200, 6505-6510.	2.2	27
76	Structural and piezoelectric properties of pulsed laser deposited ZnO thin films. Superlattices and Microstructures, 2006, 39, 366-375.	1.4	20
77	Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 248, 422-427.	3.1	48
78	Structural and electrical characterization of PLZT 22/20/80 relaxor films obtained by PLD and RFâ \in "PLD. Applied Surface Science, 2005, 248, 329-333.	3.1	14
79	Processing and characterization of ferroelectric thin films obtained by pulsed laser deposition. Journal of the European Ceramic Society, 2005, 25, 2299-2303.	2.8	12
80	Properties of La and Nb-modified PZT thin films grown by radio frequency assisted pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 39-43.	1.7	8
81	Ferroelectric (Na1/2Bi1/2)TiO3-BaTiO3thin films obtained by pulsed laser deposition. European Physical Journal Special Topics, 2005, 128, 77-80.	0.2	10
82	<title>New aspects in laser ablation process of the YBCO thin films</title> ., 2004, 5581, 472.		0
83	Wetting Properties at Nanometer Scale., 0,,.		4