Christopher Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nature Chemical Biology, 2019, 15, 556-559.	3.9	561
2	Glycointeractions in bacterial pathogenesis. Nature Reviews Microbiology, 2018, 16, 440-452.	13.6	181
3	<i>Staphylococcus aureus</i> LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10794-10799.	3.3	180
4	The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5312-20.	3.3	110
5	Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions. PLoS ONE, 2009, 4, e4927.	1.1	95
6	Characterisation of a Multi-ligand Binding Chemoreceptor CcmL (Tlp3) of Campylobacter jejuni. PLoS Pathogens, 2014, 10, e1003822.	2.1	95
7	Identification and characterization of the aspartate chemosensory receptor of <i>Campylobacter jejuni</i> . Molecular Microbiology, 2010, 75, 710-730.	1.2	94
8	Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton–Valentine leukocidin. Nature Microbiology, 2018, 3, 708-717.	5.9	63
9	A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni. Nature Communications, 2016, 7, 13206.	5.8	49
10	All major cholesterol-dependent cytolysins use glycans as cellular receptors. Science Advances, 2020, 6, eaaz4926.	4.7	46
11	The glycointeractome of serogroup B Neisseria meningitidis strain MC58. Scientific Reports, 2017, 7, 5693.	1.6	30
12	Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense. PLoS Neglected Tropical Diseases, 2015, 9, e0004120.	1.3	30
13	Variation of chemosensory receptor content of Campylobacter jejuni strains and modulation of receptor gene expression under different in vivo and in vitro growth conditions. BMC Microbiology, 2012, 12, 128.	1.3	29
14	The <i>Campylobacter jejuni</i> chemoreceptor Tlp10 has a bimodal ligand-binding domain and specificity for multiple classes of chemoeffectors. Science Signaling, 2021, 14, .	1.6	29
15	MBDS Solvent: An Improved Method for Assessment of Biofilms. Advances in Microbiology, 2013, 03, 200-204.	0.3	27
16	Exploiting species specificity to understand the tropism of a human-specific toxin. Science Advances, 2020, 6, eaax7515.	4.7	21
17	The HMW2 adhesin of non-typeable Haemophilus influenzae is a human-adapted lectin that mediates high-affinity binding to 2–6 linked N-acetylneuraminic acid glycans. Biochemical and Biophysical Research Communications, 2018, 503, 1103-1107.	1.0	20
18	Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile. Infection and Immunity, 2019, 87, .	1.0	20

CHRISTOPHER DAY

#	Article	IF	CITATIONS
19	Nontypeable <i>Haemophilus influenzae</i> Has Evolved Preferential Use of <i>N-</i> Acetylneuraminic Acid as a Host Adaptation. MBio, 2019, 10, .	1.8	20
20	Bridging the Gap: A Role for Campylobacter jejuni Biofilms. Microorganisms, 2020, 8, 452.	1.6	20
21	The Neisseria gonorrhoeae Methionine Sulfoxide Reductase (MsrA/B) Is a Surface Exposed, Immunogenic, Vaccine Candidate. Frontiers in Immunology, 2019, 10, 137.	2.2	19
22	Binding specificity of ostreolysin A6 towards Sf9 insect cell lipids. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183307.	1.4	19
23	Assessment of glycan interactions of clinical and avian isolates of Campylobacter jejuni. BMC Microbiology, 2013, 13, 228.	1.3	18
24	Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells. MBio, 2020, 11, .	1.8	18
25	Glycointeractome of Neisseria gonorrhoeae: Identification of Host Glycans Targeted by the Gonococcus To Facilitate Adherence to Cervical and Urethral Epithelial Cells. MBio, 2019, 10, .	1.8	17
26	Structure aided design of a Neu5Gc specific lectin. Scientific Reports, 2017, 7, 1495.	1.6	16
27	Identification of a domain critical for Staphylococcus aureus LukED receptor targeting and lysis of erythrocytes. Journal of Biological Chemistry, 2020, 295, 17241-17250.	1.6	15
28	The Neisseria gonorrhoeae Vaccine Candidate NHBA Elicits Antibodies That Are Bactericidal, Opsonophagocytic and That Reduce Gonococcal Adherence to Epithelial Cells. Vaccines, 2020, 8, 219.	2.1	14
29	The dCache Chemoreceptor TlpA of Helicobacter pylori Binds Multiple Attractant and Antagonistic Ligands via Distinct Sites. MBio, 2021, 12, e0181921.	1.8	14
30	G2/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora. Glycoconjugate Journal, 2014, 31, 61-70.	1.4	13
31	Antibodies to neutralising epitopes synergistically block the interaction of the receptorâ€binding domain of SARS oVâ€2 to ACE 2. Clinical and Translational Immunology, 2021, 10, e1260.	1.7	13
32	The Bexsero Neisseria meningitidis serogroup B vaccine antigen NHBA is a high-affinity chondroitin sulfate binding protein. Scientific Reports, 2018, 8, 6512.	1.6	12
33	Host glycocalyx captures HIV proximal to the cell surface via oligomannose-GlcNAc glycan-glycan interactions to support viral entry. Cell Reports, 2022, 38, 110296.	2.9	12
34	How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. Microbiology (United Kingdom), 2022, 168, .	0.7	12
35	Lectin activity of the pneumococcal pilin proteins. Scientific Reports, 2017, 7, 17784.	1.6	11
36	Role of the Gonococcal Neisserial Heparin Binding Antigen in Microcolony Formation, and Serum Resistance and Adherence to Epithelial Cells. Journal of Infectious Diseases, 2020, 221, 1612-1622.	1.9	11

CHRISTOPHER DAY

#	Article	IF	CITATIONS
37	Assigning a role for chemosensory signal transduction in Campylobacter jejuni biofilms using a combined omics approach. Scientific Reports, 2020, 10, 6829.	1.6	11
38	Biophysical characterization and structural determination of the potent cytotoxic <i>Psathyrella asperospora</i> lectin. Proteins: Structure, Function and Bioinformatics, 2017, 85, 969-975.	1.5	10
39	The Nontypeable Haemophilus influenzae Major Adhesin Hia Is a Dual-Function Lectin That Binds to Human-Specific Respiratory Tract Sialic Acid Glycan Receptors. MBio, 2020, 11, .	1.8	10
40	Solution structure, glycan specificity and of phenol oxidase inhibitory activity of Anopheles C-type lectins CTL4 and CTLMA2. Scientific Reports, 2019, 9, 15191.	1.6	9
41	Lectin activity of Pseudomonas aeruginosa vaccine candidates PSE17-1, PSE41-5 and PSE54. Biochemical and Biophysical Research Communications, 2019, 513, 287-290.	1.0	9
42	Discovery of Bacterial Fimbria–Glycan Interactions Using Whole-Cell Recombinant Escherichia coli Expression. MBio, 2021, 12, .	1.8	9
43	Specificity and utility of SubB2M, a new N-glycolylneuraminic acid lectin. Biochemical and Biophysical Research Communications, 2018, 500, 765-771.	1.0	8
44	Identification of Specific Ligands for Sensory Receptors by Small-Molecule Ligand Arrays and Surface Plasmon Resonance. Methods in Molecular Biology, 2018, 1729, 303-317.	0.4	7
45	YesU from Bacillus subtilis preferentially binds fucosylated glycans. Scientific Reports, 2018, 8, 13139.	1.6	7
46	<i>Shigella flexneri</i> Targets Human Colonic Goblet Cells by O Antigen Binding to Sialyl-Tn and Tn Antigens via Glycan–Glycan Interactions. ACS Infectious Diseases, 2020, 6, 2604-2615.	1.8	7
47	Human Plasminogen Exacerbates Clostridioides difficile Enteric Disease and Alters the Spore Surface. Gastroenterology, 2020, 159, 1431-1443.e6.	0.6	7
48	N-glycolylneuraminic acid serum biomarker levels are elevated in breast cancer patients at all stages of disease. BMC Cancer, 2022, 22, 334.	1.1	7
49	Efficient function of signal peptidase 1 of Escherichia coli is partly determined by residues in the mature N-terminus of exported proteins. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1018-1022.	1.4	6
50	Ucl fimbriae regulation and glycan receptor specificity contribute to gut colonisation by extra-intestinal pathogenic Escherichia coli. PLoS Pathogens, 2022, 18, e1010582.	2.1	6
51	The Pneumococcal Alpha-Glycerophosphate Oxidase Enhances Nasopharyngeal Colonization through Binding to Host Glycoconjugates. EBioMedicine, 2017, 18, 236-243.	2.7	5
52	Human glycan expression patterns influence Group A streptococcal colonization of epithelial cells. FASEB Journal, 2019, 33, 10808-10818.	0.2	5
53	Specific blood group antibodies inhibit Shigella flexneri interaction with human cells in the absence of spinoculation. Biochemical and Biophysical Research Communications, 2020, 521, 131-136.	1.0	5
54	Functional Microarray Platform with Self-Assembled Monolayers on 3C-Silicon Carbide. Langmuir, 2020, 36, 13181-13192.	1.6	5

CHRISTOPHER DAY

#	Article	IF	CITATIONS
55	RNA Sequencing Data Sets Identifying Differentially Expressed Transcripts during Campylobacter jejuni Biofilm Formation. Microbiology Resource Announcements, 2020, 9, .	0.3	5
56	The Lst Sialyltransferase of Neisseria gonorrhoeae Can Transfer Keto-Deoxyoctanoate as the Terminal Sugar of Lipooligosaccharide: a Glyco-Achilles Heel That Provides a New Strategy for Vaccines to Prevent Gonorrhea. MBio, 2021, 12, .	1.8	4
57	Identification of Ligand-Receptor Interactions: Ligand Molecular Arrays, SPR and NMR Methodologies. Methods in Molecular Biology, 2017, 1512, 51-63.	0.4	3
58	Characterizing the meningococcal glycointeractome: what is new?. Future Microbiology, 2018, 13, 279-282.	1.0	2
59	Identification of the Glycan Binding Profile of Human and Rodent <i>Plasmodium</i> Sporozoites. ACS Infectious Diseases, 2021, 7, 2383-2389.	1.8	2
60	The EngCP endo α-N-acetylgalactosaminidase is a virulence factor involved in Clostridium perfringens gas gangrene infections. International Journal of Medical Microbiology, 2020, 310, 151398.	1.5	1
61	Investigation of Mycobacterium ulcerans Glycan Interactions Using Glycan and Surface Plasmon. Methods in Molecular Biology, 2022, 2387, 29-40.	0.4	1
62	Investigation of Group A Streptococcal Interactions with Host Glycan Structures Using High-Throughput Techniques: Glycan Microarray Analysis Using Recombinant Protein and Whole Cells. Methods in Molecular Biology, 2020, 2136, 145-151.	0.4	1
63	The cell surface protein MUL_3720 confers binding of the skin pathogen Mycobacterium ulcerans to sulfated glycans and keratin. PLoS Neglected Tropical Diseases, 2021, 15, e0009136.	1.3	0