
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B: Environmental, 2002, 39, 283-303.	10.8	806
2	Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Applied Catalysis B: Environmental, 2005, 61, 130-139.	10.8	401
3	Mechanistic Aspects of the Selective Reduction of NO by Propene over Alumina and Silver–Alumina Catalysts. Journal of Catalysis, 1999, 187, 493-505.	3.1	341
4	Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/CeO2Catalyst. Journal of Physical Chemistry B, 2004, 108, 20240-20246.	1.2	306
5	Physical characterization of molybdenum oxycarbide catalyst; TEM, XRD and XPS. Catalysis Today, 1995, 23, 251-267.	2.2	202
6	Quantitative Analysis of Adsorbate Concentrations by Diffuse Reflectance FT-IR. Analytical Chemistry, 2007, 79, 3912-3918.	3.2	193
7	Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water–gas shift catalyst: First unambiguous evidence of the minority role of formates as reaction intermediates. Journal of Catalysis, 2007, 247, 277-287.	3.1	174
8	Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study. Catalysis Today, 2000, 59, 287-304.	2.2	167
9	On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide. Applied Catalysis B: Environmental, 2002, 36, 287-297.	10.8	162
10	Study of the origin of the deactivation of a Pt/CeO catalyst during reverse water gas shift (RWGS) reaction. Journal of Catalysis, 2004, 226, 382-392.	3.1	162
11	Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors. Applied Catalysis A: General, 2007, 333, 122-130.	2.2	139
12	The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chemical Society Reviews, 2010, 39, 4602.	18.7	130
13	Transition-Metal Nanoparticles in Hollow Zeolite Single Crystals as Bifunctional and Size-Selective Hydrogenation Catalysts. Chemistry of Materials, 2015, 27, 276-282.	3.2	118
14	Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: How relevant is acetaldehyde self-aldolization?. Journal of Catalysis, 2014, 311, 28-32.	3.1	111
15	Quantitative DRIFTS investigation of possible reaction mechanisms for the water–gas shift reaction on high-activity Pt- and Au-based catalysts. Journal of Catalysis, 2007, 252, 18-22.	3.1	108
16	On the reactivity of carbonate species on a Pt/CeO2 catalyst under various reaction atmospheres: Application of the isotopic exchange technique. Applied Catalysis A: General, 2005, 289, 104-112.	2.2	106
17	Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts. Applied Catalysis A: General, 2008, 345, 119-127.	2.2	104
18	Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. Physical Chemistry Chemical Physics, 2013, 15, 7321.	1.3	102

#	Article	IF	CITATIONS
19	Effect of ex situ treatments with SO2 on the activity of a low loading silver–alumina catalyst for the selective reduction of NO and NO2 by propene. Applied Catalysis B: Environmental, 2000, 24, 23-32.	10.8	99
20	An investigation of possible mechanisms for the water–gas shift reaction over a ZrO2-supported Pt catalyst. Journal of Catalysis, 2006, 244, 183-191.	3.1	98
21	Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. Microporous and Mesoporous Materials, 2012, 148, 115-121.	2.2	95
22	Deactivation Mechanism of a Au/CeZrO ₄ Catalyst During a Low-Temperature Water Gas Shift Reaction. Journal of Physical Chemistry C, 2007, 111, 16927-16933.	1.5	92
23	Size-selective hydrogenation at the subnanometer scale over platinum nanoparticles encapsulated in silicalite-1 single crystal hollow shells. Chemical Communications, 2014, 50, 1824.	2.2	89
24	A critical analysis of the experimental evidence for and against a formate mechanism for high activity water-gas shift catalysts. Applied Catalysis A: General, 2011, 409-410, 3-12.	2.2	81
25	On the complexity of the water-gas shift reaction mechanism over a Pt/CeO2 catalyst: Effect of the temperature on the reactivity of formate surface species studied by operando DRIFT during isotopic transient at chemical steady-state. Catalysis Today, 2007, 126, 143-147.	2.2	80
26	On the importance of steady-state isotopic techniques for the investigation of the mechanism of the reverse water-gas-shift reactionElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b4/b403438d/. Chemical Communications, 2004, , 1636.	2.2	79
27	A modified commercial DRIFTS cell for kinetically relevant operando studies of heterogeneous catalytic reactions. Applied Catalysis A: General, 2008, 340, 196-202.	2.2	74
28	Synergy between Metallic and Oxidized Pt Sites Unravelled during Room Temperature COâ€Oxidation on Pt/Ceria. Angewandte Chemie - International Edition, 2021, 60, 3799-3805.	7.2	74
29	Effect of the silver loading and some other experimental parameters on the selective reduction of NO with C3H6 over Al2O3 and ZrO2-based catalysts. Applied Catalysis B: Environmental, 2001, 30, 163-172.	10.8	73
30	DRIFTS/MS Studies during Chemical Transients and SSITKA of the CO/H ₂ Reaction over Co-MgO Catalysts. Journal of Physical Chemistry C, 2010, 114, 2248-2255.	1.5	73
31	Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst. Chemical Communications, 1999, , 2247-2248.	2.2	66
32	Promotional effect of H2 on CO oxidation over Au/TiO2 studied by operando infrared spectroscopy. Applied Catalysis B: Environmental, 2009, 86, 190-195.	10.8	65
33	The power of quantitative kinetic studies of adsorbate reactivity by operando FTIR spectroscopy carried out at chemical potential steady-state. Catalysis Today, 2010, 155, 164-171.	2.2	64
34	On the need to use steady-state or operando techniques to investigate reaction mechanisms: An in situ DRIFTS and SSITKA-based study example. Catalysis Today, 2006, 113, 94-101.	2.2	63
35	Oxidative dehydrogenation of propane over molybdenum-containing catalysts. Catalysis Today, 1997, 37, 33-42.	2.2	62
36	Differences in the Reactivity of Organo-Nitro and Nitrito Compounds over Al2O3-Based Catalysts Active for the Selective Reduction of NOx. Journal of Catalysis, 2001, 202, 340-353.	3.1	62

#	Article	IF	CITATIONS
37	The use of short time-on-stream in situ spectroscopic transient kinetic isotope techniques to investigate the mechanism of hydrocarbon selective catalytic reduction (HC-SCR) of NO at low temperatures. Journal of Catalysis, 2011, 281, 98-105.	3.1	62
38	Pulse-response TAP studies of the reverse water–gas shift reaction over a Pt/CeO2 catalyst. Journal of Catalysis, 2006, 237, 102-110.	3.1	61
39	Guest sorption and desorption in the metal–organic framework [Co(INA)2]Â(INA = isonicotinate)–Âevidence of intermediate phases during desorption. Dalton Transactions, 2004, , 1807-1811.	1.6	60
40	Mixing Copper Nanoparticles and ZnO Nanocrystals: A Route towards Understanding the Hydrogenation of CO ₂ to Methanol?. Angewandte Chemie - International Edition, 2011, 50, 4053-4054.	7.2	60
41	Synthesis and Characterization of High Specific Surface Area Vanadium Carbide; Application to Catalytic Oxidation. Journal of Catalysis, 1997, 169, 33-44.	3.1	59
42	Platinum nanoparticles entrapped in zeolite nanoshells as active and sintering-resistant arene hydrogenation catalysts. Journal of Catalysis, 2015, 332, 25-30.	3.1	59
43	Comparison of New Microemulsion Prepared "Pt-in-Ceria―Catalyst with Conventional "Pt-on-Ceria― Catalyst for Waterâ^'Gas Shift Reaction. Journal of Physical Chemistry B, 2006, 110, 8540-8543.	1.2	54
44	The effect of reaction conditions on the stability of Au/CeZrO4 catalysts in the low-temperature water–gas shift reaction. Journal of Catalysis, 2010, 273, 257-265.	3.1	53
45	Pitfalls and benefits of in situ and operando diffuse reflectance FT-IR spectroscopy (DRIFTS) applied to catalytic reactions. Reaction Chemistry and Engineering, 2016, 1, 134-141.	1.9	53
46	Direct evidence by in situ IR CO monitoring of the formation and the surface segregation of a Pt–Sn alloy. Chemical Communications, 2014, 50, 8590.	2.2	51
47	In Situ IR Study of the Nature and Mobility of Sorbed Species on H-FER during But-1-ene Isomerization. Journal of Catalysis, 2002, 211, 366-378.	3.1	50
48	Investigating the mechanism of the H2-assisted selective catalytic reduction (SCR) of NOx with octane using fast cycling transient in situ DRIFTS-MS analysis. Journal of Catalysis, 2010, 276, 49-55.	3.1	50
49	An In-situ DRIFTS Study of the Mechanism of the CO2 Reforming of CH4 over a Pt/ZrO2 Catalyst. Studies in Surface Science and Catalysis, 1998, 119, 819-824.	1.5	46
50	On the usefulness of carbon isotopic exchange for the operando analysis of metal–carbonyl bands by IR over ceria-containing catalysts. Journal of Catalysis, 2008, 254, 238-243.	3.1	45
51	Spectrum baseline artefacts and correction of gas-phase species signal during diffuse reflectance FT-IR analyses of catalysts at variable temperatures. Applied Catalysis A: General, 2015, 495, 17-22.	2.2	45
52	Origins of the poisoning effect of chlorine on the CO hydrogenation activity of alumina-supported cobalt monitored by operando FT-IR spectroscopy. Journal of Catalysis, 2015, 329, 229-236.	3.1	45
53	H2-induced promotion of CO oxidation over unsupported gold. Catalysis Today, 2008, 138, 43-49.	2.2	44
54	Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas. Applied Catalysis B: Environmental, 2017, 203, 289-299.	10.8	44

#	Article	IF	CITATIONS
55	Identifying critical factors in the regeneration of NOx-trap materials under realistic conditions using fast transient techniques. Applied Catalysis B: Environmental, 2007, 72, 178-186.	10.8	43
56	Nature and reactivity of the surface species observed over a supported cobalt catalyst under CO/H2 mixtures. Catalysis Today, 2015, 242, 178-183.	2.2	43
57	Origin of the synergistic effect between TiO2 crystalline phases in the Ni/TiO2-catalyzed CO2 methanation reaction. Journal of Catalysis, 2021, 398, 14-28.	3.1	43
58	Part I. n-Butane dehydrogenation on unsupported carbon modified MoO3 (MoOxCy): effect of steam on the catalyst stability. Applied Catalysis A: General, 1999, 181, 157-170.	2.2	41
59	CO PROX over Pt–Sn/Al2O3: A combined kinetic and in situ DRIFTS study. Catalysis Today, 2015, 258, 241-246.	2.2	41
60	Hollow Zeolite Singleâ€Crystals Encapsulated Alloy Nanoparticles with Controlled Size and Composition. ChemNanoMat, 2016, 2, 534-539.	1.5	40
61	Individual Heat of Adsorption of Adsorbed CO Species on Palladium and Pd–Sn Nanoparticles Supported on Al ₂ O ₃ by Using Temperature-Programmed Adsorption Equilibrium Methods. ACS Catalysis, 2016, 6, 2545-2558.	5.5	39
62	CO Hydrogenation on Cobaltâ€Based Catalysts: Tin Poisoning Unravels CO in Hollow Sites as a Main Surface Intermediate. Angewandte Chemie - International Edition, 2018, 57, 547-550.	7.2	39
63	Relevance of IR Spectroscopy of Adsorbed CO for the Characterization of Heterogeneous Catalysts Containing Isolated Atoms. Journal of Physical Chemistry C, 2021, 125, 21810-21823.	1.5	38
64	Coke chemistry under vacuum gasoil/bio-oil FCC co-processing conditions. Catalysis Today, 2015, 257, 200-212.	2.2	36
65	Determination of formate decomposition rates and relation to product formation during CO hydrogenation over supported cobalt. Catalysis Today, 2016, 259, 192-196.	2.2	33
66	Effect of polyaromatic tars on the activity for methane steam reforming of nickel particles embedded in silicalite-1. Applied Catalysis B: Environmental, 2017, 204, 515-524.	10.8	30
67	In Situ IR Study of the Nature and Mobility of Sorbed Species on H-FER during But-1-ene Isomerization. Journal of Catalysis, 2002, 211, 366-378.	3.1	29
68	A thermogravimetric and FT-IR study of the reduction by H2 of sulfated Pt/CexZr1â^'xO2 solids. Applied Catalysis B: Environmental, 2009, 90, 368-379.	10.8	28
69	Bridging the Gap between Surface Science and Industrial Catalysis. ACS Nano, 2008, 2, 2441-2444.	7.3	27
70	Experiments and Modeling of Methane Autothermal Reforming over Structured Ni–Rh-Based Si-SiC Foam Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 13165-13174.	1.8	27
71	Hollow Beta Zeolite Single Crystals for the Design of Selective Catalysts. Crystal Growth and Design, 2018, 18, 592-596.	1.4	27
72	Effects of H2S and phenanthrene on the activity of Ni and Rh-based catalysts for the reforming of a simulated biomass-derived producer gas. Applied Catalysis B: Environmental, 2018, 221, 206-214.	10.8	27

#	Article	IF	CITATIONS
73	Effect of the carburization of MoO3-based catalysts on the activity for butane hydroisomerization. Applied Catalysis A: General, 2008, 344, 30-35.	2.2	26
74	Selectiven-Butane Isomerization over High Specific Surface Area MoO3-Carbon-Modified Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 4166-4175.	1.8	25
75	Unravelling Platinum–Zirconia Interfacial Sites Using CO Adsorption. Inorganic Chemistry, 2019, 58, 8021-8029.	1.9	25
76	An operando DRIFTS investigation into the resistance against CO ₂ poisoning of a Rh/alumina catalyst during toluenehydrogenation. Physical Chemistry Chemical Physics, 2012, 14, 2159-2163.	1.3	24
77	Highly Dispersed Nickel Particles Encapsulated in Multiâ€hollow Silicaliteâ€l Single Crystal Nanoboxes: Effects of Siliceous Deposits and Phosphorous Species on the Catalytic Performances. ChemCatChem, 2017, 9, 2297-2307.	1.8	24
78	Combined DRIFTS and DFT Study of CO Adsorption and Segregation Modes in Pt–Sn Nanoalloys. Journal of Physical Chemistry C, 2020, 124, 9979-9989.	1.5	23
79	CsF and alumina: A mixed homogeneous–heterogeneous catalytic system for the transesterification of sunflower oil with methanol. Applied Catalysis B: Environmental, 2010, 97, 269-275.	10.8	22
80	Unraveling the mechanism of catalytic reactions through combined kinetic and thermodynamic analyses: Application to the condensation of ethanol. Comptes Rendus Chimie, 2015, 18, 345-350.	0.2	22
81	XAS/DRIFTS/MS spectroscopy for time-resolved <i>operando</i> investigations at high temperature. Journal of Synchrotron Radiation, 2018, 25, 1745-1752.	1.0	22
82	Nano-structural investigation of Ag/Al2O3 catalyst for selective removal of O2 with excess H2 in the presence of C2H4. Applied Catalysis A: General, 2011, 391, 187-193.	2.2	21
83	CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation. Journal of Catalysis, 2018, 359, 76-81.	3.1	21
84	Acetylene semi-hydrogenation over Pd-Zn/CeO2: Relevance of CO adsorption and methanation as descriptors of selectivity. Catalysis Communications, 2018, 105, 52-55.	1.6	20
85	New insights into the origin of NO2 in the mechanism of the selective catalytic reduction of NO by propene over alumina. Chemical Communications, 1999, , 259-260.	2.2	19
86	Understanding the storage function of a commercial NOx-storage-reduction material using operando IR under realistic conditions. Applied Catalysis B: Environmental, 2014, 160-161, 335-343.	10.8	19
87	Development of a robust and efficient biogas processor for hydrogen production. Part 1: Modelling and simulation. International Journal of Hydrogen Energy, 2017, 42, 22841-22855.	3.8	18
88	DRIFTS/MS/Isotopic Labeling Study on the NO-Moderated Decomposition of a Silica-Supported Nickel Nitrate Catalyst Precursor. Journal of Physical Chemistry C, 2010, 114, 7839-7845.	1.5	17
89	A Pt/Al ₂ O ₃ -supported metal–organic framework film as the size-selective core–shell hydrogenation catalyst. Chemical Communications, 2016, 52, 7161-7163.	2.2	17
90	Effects of temperature and rich-phase composition on the performance of a commercial NOx-Storage-Reduction material. Applied Catalysis B: Environmental, 2016, 181, 534-541.	10.8	17

#	Article	IF	CITATIONS
91	Selective removal of external Ni nanoparticles on Ni@silicalite-1 single crystal nanoboxes: Application to size-selective arene hydrogenation. Applied Catalysis A: General, 2017, 535, 69-76.	2.2	16
92	Selectivity loss in Fischer-Tropsch synthesis: The effect of cobalt carbide formation. Journal of Catalysis, 2021, 397, 1-12.	3.1	16
93	Possible intermediates in the selective catalytic reduction of NOx: differences in the reactivity of nitro-compounds and tert-butyl nitrite over 1³-Al2O3. Chemical Communications, 1999, , 815-816.	2.2	15
94	Correlation between deactivation and Pt-carbonyl formation during toluene hydrogenation using a H2/CO2 mixture. Journal of Catalysis, 2011, 278, 153-161.	3.1	15
95	Negative apparent kinetic order in steady-state kinetics of the water-gas shift reaction over a Pt–CeO2 catalyst. Catalysis Today, 2008, 138, 216-221.	2.2	14
96	Demonstration of Improved Effectiveness Factor of Catalysts Based on Hollow Single Crystal Zeolites. ChemCatChem, 2018, 10, 4525-4529.	1.8	14
97	Contributions and limitations of IR spectroscopy of CO adsorption to the characterization of bimetallic and nanoalloy catalysts. Catalysis Today, 2021, 373, 59-68.	2.2	14
98	On the link between CO surface coverage and selectivity to CH4 during CO2 hydrogenation over supported cobalt catalysts. Journal of Catalysis, 2022, 411, 93-96.	3.1	14
99	Hydroisomerisation of n-alkanes over partially reduced MoO3: Promotion by CoAlPO-11 and relations to reaction mechanism and rate-determining step. Catalysis Today, 2006, 112, 64-67.	2.2	13
100	Understanding deactivation processes during bio-syngas methanation: DRIFTS and SSITKA experiments and kinetic modeling over Ni/Al2O3 catalysts. Catalysis Today, 2018, 299, 172-182.	2.2	13
101	New insights into the reaction mechanism and the rate-determining step of n-butane hydroisomerisation over reduced MoO3 catalystsElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b304978g/. Chemical Communications, 2003, , 1954.	2.2	12
102	Unraveling the mechanism of chemical reactions through thermodynamic analyses: A short review. Applied Catalysis A: General, 2015, 504, 220-227.	2.2	12
103	High-throughput assessment of catalyst stability during autothermal reforming of model biogas. Catalysis Science and Technology, 2015, 5, 4390-4397.	2.1	12
104	Heat of adsorption of CO on EUROPT-1 using the AEIR method: Effect of analysis parameters, water and sample mode. Applied Catalysis A: General, 2015, 505, 309-318.	2.2	12
105	Influence of crystal size on the uptake rate of isooctane in plain and hollow silicalite-1 crystals. Microporous and Mesoporous Materials, 2016, 228, 147-152.	2.2	12
106	Formation of Ammonia during the NOâ^'H ₂ Reaction over Pt/ZrO ₂ . Journal of Physical Chemistry C, 2008, 112, 18157-18163.	1.5	11
107	Characterization of Surface Acidity of Carbonated Materials by IR-Sensitive Molecular Probes: Advantages of Using <i>tert</i> Butyl Cyanide. Journal of Physical Chemistry C, 2011, 115, 24931-24936.	1.5	11
108	Rational design of a CO2-resistant toluene hydrogenation catalyst based on FT-IR spectroscopy studies. Journal of Catalysis, 2014, 318, 61-66.	3.1	11

#	Article	IF	CITATIONS
109	Reconstruction of ceria-supported Pt-Co particles under H2 and CO at 220 °C. Applied Catalysis B: Environmental, 2016, 197, 56-61.	10.8	11
110	Development of a robust and efficient biogas processor for hydrogen production. Part 2: Experimental campaign. International Journal of Hydrogen Energy, 2018, 43, 161-177.	3.8	11
111	Removal of Pemetrexed from aqueous phase using activated carbons in static mode. Chemical Engineering Journal, 2021, 405, 127016.	6.6	11
112	DRIFTS-MS-SSITKA Study of the Reverse Water-Gas Shift Reaction. Oil and Gas Science and Technology, 2006, 61, 497-502.	1.4	10
113	On the contamination with nickel and nickel tetracarbonyl during FT-IR investigation of catalysts under CO-containing gases. Journal of Catalysis, 2019, 372, 388.	3.1	10
114	CO Hydrogenation on Cobaltâ€Based Catalysts: Tin Poisoning Unravels CO in Hollow Sites as a Main Surface Intermediate. Angewandte Chemie, 2018, 130, 556-559.	1.6	9
115	Stability of Pt-Adsorbed CO on Catalysts for Room Temperature-Oxidation of CO. Catalysts, 2022, 12, 532.	1.6	9
116	TAP studies on 2% Ag/γ–Al2O3 catalyst for selective reduction of oxygen in a H2-rich ethylene feed. Catalysis Science and Technology, 2012, 2, 2128.	2.1	8
117	Hydrogenation Sizeâ€Selective Pt/Hollow Beta Catalysts. Chemistry - A European Journal, 2019, 25, 2972-2977.	1.7	8
118	Modulating the Selectivity for CO and Butane Oxidation over Heterogeneous Catalysis through Amorphous Catalyst Coatings. Journal of Physical Chemistry C, 2008, 112, 10968-10975.	1.5	7
119	A flexible cell for <i>in situ</i> combined XAS–DRIFTS–MS experiments. Journal of Synchrotron Radiation, 2019, 26, 801-810.	1.0	6
120	Highly dispersed Au, Ag and Au-Ag alloy nanoparticles encapsulated in single crystal multi-hollow silicalite-1. Applied Catalysis A: General, 2019, 569, 86-92.	2.2	6
121	Selective catalytic reduction of O2 with excess H2 in the presence of C2H4 or C3H6. Chemical Communications, 2008, , 6212.	2.2	5
122	Comment on the "In situ IR studies on the mechanism of methanol synthesis from CO/H2 and CO2/H2 over Cu-ZnO-Al2O3 catalyst―by Wang et al. Korean Journal of Chemical Engineering, 2011, 28, 1495-1496.	1.2	5
123	In situ FT-IR spectroscopy investigations of dimethyl carbonate synthesis: on the contribution of gas-phase species. RSC Advances, 2016, 6, 17288-17289.	1.7	5
124	Selectivity loss in Fischer-Tropsch synthesis: The effect of carbon deposition. Journal of Catalysis, 2021, 401, 7-16.	3.1	5
125	Transition state and diffusion controlled selectivity in skeletal isomerization of olefins. Studies in Surface Science and Catalysis, 2000, 130, 323-328.	1.5	4
126	Effect of Sn on the production of methanol during syngas conversion over Co/alumina. Catalysis Today, 2019, 336, 84-89.	2.2	4

#	Article	IF	CITATIONS
127	Katalyse der Oxidation von CO an Pt/CeO ₂ bei Raumtemperatur: Synergie zwischen metallischen und oxidierten Ptâ€Zentren. Angewandte Chemie, 2021, 133, 3843-3849.	1.6	4
128	Coupling kinetic and spectroscopic methods for the investigation of environmentally important reactions. Catalysis, 0, , 94-118.	0.6	4
129	Comments on Kalamaras et al., Appl. Catal. B: Environ. 136–137 (2013) 225–238, discussing the difficulty in assessing reactant and product readsorption effects in SSITKA-type work. Applied Catalysis B: Environmental, 2014, 152-153, 437-438.	10.8	3
130	Au-Modified Pd catalyst exhibits improved activity and stability for NO direct decomposition. Catalysis Science and Technology, 2021, 11, 2908-2914.	2.1	3
131	Comment on "Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: mechanism and application―by Jiang et al., Appl. Catal., B 2020, 278, 119304. Applied Catalysis B: Environmental, 2022, 302, 120841.	10.8	3
132	Evidencing Pt-Au alloyed domains on supported bimetallic nanoparticles using CO desorption kinetics. Applied Catalysis A: General, 2022, 639, 118643.	2.2	2
133	Dramatic promotion of copper–alumina catalysts by sodium for acetone trimerisation. Catalysis Science and Technology, 2014, 4, 2480-2483.	2.1	1
134	Comment on "Direct Decomposition of NO _{<i>x</i>} over TiO ₂ Supported Transition Metal Oxides at Low Temperatures― Industrial & Engineering Chemistry Research, 2020, 59, 4835-4837.	1.8	1
135	Recent progresses on the use of supported bimetallic catalysts for the preferential oxidation of CO (PROX). Catalysis, 0, , 237-267.	0.6	1
136	Comments on "Surface interfaces in low temperature water-gas shift: The metal oxide synergy, the assistance of co-adsorbed water, and alkali doping―by Jacobs and Davis, Int J Hydrogen Energy, 35 (2010) 3522–36. International Journal of Hydrogen Energy, 2012, 37, 5311-5313.	3.8	0
137	Visualizing and Quantifying the Cationic Mobility at {100} Surfaces of Ceria: Application to CO2 Adsorption/Desorption Phenomena in the Environmental Transmission Electron Microscope. Microscopy and Microanalysis, 2018, 24, 1940-1941.	0.2	0
138	Comment on the correction of gas-phase signals during IR operando analyses. Chinese Journal of Catalysis, 2019, 40, 1.	6.9	0