
Simone Patergnani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414141/publications.pdf Version: 2024-02-01

SIMONE PATERCHANI

#	Article	IF	CITATIONS
1	Mitochondria-Ros Crosstalk in the Control of Cell Death and Aging. Journal of Signal Transduction, 2012, 2012, 1-17.	2.0	488
2	Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium, 2018, 69, 62-72.	1.1	435
3	Role of the c subunit of the F _O ATP synthase in mitochondrial permeability transition. Cell Cycle, 2013, 12, 674-683.	1.3	416
4	The endoplasmic reticulum–mitochondria connection: One touch, multiple functions. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 461-469.	0.5	392
5	Mitochondrial Ca2+ and apoptosis. Cell Calcium, 2012, 52, 36-43.	1.1	361
6	ATP synthesis and storage. Purinergic Signalling, 2012, 8, 343-357.	1.1	340
7	BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature, 2017, 546, 549-553.	13.7	308
8	Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Communication and Signaling, 2011, 9, 19.	2.7	304
9	Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications. Antioxidants and Redox Signaling, 2015, 22, 995-1019.	2.5	243
10	Protein Kinases and Phosphatases in the Control of Cell Fate. Enzyme Research, 2011, 2011, 1-26.	1.8	229
11	Mitochondria-associated membranes (MAMs) and inflammation. Cell Death and Disease, 2018, 9, 329.	2.7	210
12	Downregulation of the Mitochondrial Calcium Uniporter by Cancer-Related miR-25. Current Biology, 2013, 23, 58-63.	1.8	198
13	Calcium Dynamics as a Machine for Decoding Signals. Trends in Cell Biology, 2018, 28, 258-273.	3.6	176
14	Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion, 2012, 12, 77-85.	1.6	158
15	Syndromic parkinsonism and dementia associated with <scp><i>OPA</i></scp> <i>1</i> missense mutations. Annals of Neurology, 2015, 78, 21-38.	2.8	154
16	Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nature Protocols, 2013, 8, 2105-2118.	5.5	149
17	Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. International Journal of Molecular Sciences, 2020, 21, 8323.	1.8	147
18	Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 615-627.	0.5	146

#	Article	IF	CITATIONS
19	Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nature Communications, 2015, 6, 6201.	5.8	130
20	PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development. Cell Reports, 2016, 16, 2415-2427.	2.9	127
21	Redox Control of Protein Kinase C: Cell- and Disease-Specific Aspects. Antioxidants and Redox Signaling, 2010, 13, 1051-1085.	2.5	123
22	Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Molecular Medicine, 2015, 7, 1403-1417.	3.3	109
23	Endoplasmic Reticulum-Mitochondria Communication Through Ca2+ Signaling: The Importance of Mitochondria-Associated Membranes (MAMs). Advances in Experimental Medicine and Biology, 2017, 997, 49-67.	0.8	107
24	Germline BAP1 mutations induce a Warburg effect. Cell Death and Differentiation, 2017, 24, 1694-1704.	5.0	105
25	Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death and Differentiation, 2014, 21, 1198-1208.	5.0	97
26	ER-mitochondria cross-talk is regulated by the Ca ²⁺ sensor NCS1 and is impaired in Wolfram syndrome. Science Signaling, 2018, 11, .	1.6	96
27	Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules, 2020, 10, 998.	1.8	81
28	Perturbed mitochondrial Ca ²⁺ signals as causes or consequences of mitophagy induction. Autophagy, 2013, 9, 1677-1686.	4.3	73
29	PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy, 2013, 9, 1367-1385.	4.3	70
30	Mitophagy in Cardiovascular Diseases. Journal of Clinical Medicine, 2020, 9, 892.	1.0	70
31	Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. Advances in Experimental Medicine and Biology, 2012, 740, 411-437.	0.8	70
32	Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer's disease and mild cognitive impairment. Scientific Reports, 2019, 9, 20009.	1.6	66
33	Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. International Review of Cell and Molecular Biology, 2017, 328, 49-103.	1.6	65
34	Mitochondrial Oxidative Stress and "Mito-Inflammation― Actors in the Diseases. Biomedicines, 2021, 9, 216.	1.4	63
35	H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene, 2014, 33, 2329-2340.	2.6	54
36	NRIP1/RIP140 siRNA-mediated attenuation counteracts mitochondrial dysfunction in Down syndrome. Human Molecular Genetics, 2014, 23, 4406-4419.	1.4	53

#	Article	IF	CITATIONS
37	Mitochondria-Associated Endoplasmic Reticulum Membranes Microenvironment: Targeting Autophagic and Apoptotic Pathways in Cancer Therapy. Frontiers in Oncology, 2015, 5, 173.	1.3	53
38	Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25543-25552.	3.3	53
39	Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 439-441.	0.9	53
40	Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients. Stem Cells Translational Medicine, 2020, 9, 377-388.	1.6	43
41	Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines, 2021, 9, 169.	1.4	43
42	LonP1 Differently Modulates Mitochondrial Function and Bioenergetics of Primary Versus Metastatic Colon Cancer Cells. Frontiers in Oncology, 2018, 8, 254.	1.3	41
43	Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
44	Mitophagy and Mitochondrial Balance. Methods in Molecular Biology, 2015, 1241, 181-194.	0.4	40
45	Endoplasmic reticulum-mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 858-864.	1.9	38
46	Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Scientific Reports, 2020, 10, 4785.	1.6	33
47	Mitochondrial Ca2+ Remodeling is a Prime Factor in Oncogenic Behavior. Frontiers in Oncology, 2015, 5, 143.	1.3	31
48	Correlation between auto/mitophagic processes and magnetic resonance imaging activity in multiple sclerosis patients. Journal of Neuroinflammation, 2019, 16, 131.	3.1	31
49	Relevance of Autophagy and Mitophagy Dynamics and Markers in Neurodegenerative Diseases. Biomedicines, 2021, 9, 149.	1.4	30
50	Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models. Science Translational Medicine, 2022, 14, eabh3763.	5.8	29
51	Methods to Monitor and Compare Mitochondrial and Glycolytic ATP Production. Methods in Enzymology, 2014, 542, 313-332.	0.4	27
52	The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget, 2015, 6, 23427-23444.	0.8	27
53	Human adipose stem cells induced to osteogenic differentiation by an innovative collagen/hydroxylapatite hybrid scaffold. FASEB Journal, 2017, 31, 4555-4565.	0.2	24
54	Mitochondrial functionality and metabolism in T cells from progressive multiple sclerosis patients. European Journal of Immunology, 2019, 49, 2204-2221.	1.6	24

#	Article	IF	CITATIONS
55	Impairment of mitophagy and autophagy accompanies calcific aortic valve stenosis favouring cell death and the severity of disease. Cardiovascular Research, 2022, 118, 2548-2559.	1.8	24
56	The induction of AMPK-dependent autophagy leads to P53 degradation and affects cell growth and migration in kidney cancer cells. Experimental Cell Research, 2020, 395, 112190.	1.2	22
57	Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacological Research, 2022, 177, 106119.	3.1	22
58	The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. Biology, 2022, 11, 300.	1.3	22
59	Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers, 2021, 13, 5622.	1.7	21
60	The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules, 2020, 10, 1437.	1.8	20
61	Aortic Valve Stenosis and Mitochondrial Dysfunctions: Clinical and Molecular Perspectives. International Journal of Molecular Sciences, 2020, 21, 4899.	1.8	20
62	High mitochondrial Ca ²⁺ content increases cancer cell proliferation upon inhibition of mitochondrial permeability transition pore (mPTP). Cell Cycle, 2019, 18, 914-916.	1.3	19
63	Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or Mitophagic Responses. Methods in Enzymology, 2017, 588, 171-186.	0.4	18
64	Mitochondrial Stress Responses and "Mito-Inflammation―in Cystic Fibrosis. Frontiers in Pharmacology, 2020, 11, 581114.	1.6	18
65	Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Frontiers in Pharmacology, 2021, 12, 581645.	1.6	16
66	Molecular Mechanisms of Autophagy in Cancer Development, Progression, and Therapy. Biomedicines, 2022, 10, 1596.	1.4	16
67	Chemoresistance and Cancer-Related Inflammation: Two Hallmarks of Cancer Connected by an Atypical Link, PKCl¶. Frontiers in Oncology, 2013, 3, 232.	1.3	15
68	Adding a "Notch―to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Frontiers in Cell and Developmental Biology, 2021, 9, 695114.	1.8	15
69	Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. Journal of Clinical Medicine, 2020, 9, 559.	1.0	14
70	From Bed to Bench and Back: TNF-α, IL-23/IL-17A, and JAK-Dependent Inflammation in the Pathogenesis of Psoriatic Synovitis. Frontiers in Pharmacology, 2021, 12, 672515.	1.6	14
71	BAP1 forms a trimer with HMGB1 and HDAC1 that modulates gene × environment interaction with asbestos. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
72	Measurement of ATP concentrations in mitochondria of living cells using luminescence and fluorescence approaches. Methods in Cell Biology, 2020, 155, 199-219.	0.5	13

#	Article	IF	CITATIONS
73	Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity. Diagnostics, 2020, 10, 834.	1.3	12
74	Vav1 is necessary for PU .1 mediated upmodulation of miRâ€⊋9b in acute myeloid leukaemiaâ€derived cells. Journal of Cellular and Molecular Medicine, 2018, 22, 3149-3158.	1.6	11
75	Methods to Monitor Mitophagy and Mitochondrial Quality: Implications in Cancer, Neurodegeneration, and Cardiovascular Diseases. Methods in Molecular Biology, 2021, 2310, 113-159.	0.4	9
76	Novel function of the tumor suppressor PML at ER-mitochondria sites in the control of autophagy. Oncotarget, 2017, 8, 81723-81724.	0.8	5
77	Editorial: Organelles Relationships and Interactions: A Cancer Perspective. Frontiers in Cell and Developmental Biology, 2021, 9, 678307.	1.8	4
78	Metformin Induces Apoptosis and Inhibits Notch1 in Malignant Pleural Mesothelioma Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 534499.	1.8	3
79	Abstract 5519: BAP1 modulates gene-environment interaction in carcinogenesis. , 2018, , .		0
80	ER-mitochondria crosstalk is regulated by NCS1 and is impaired in Wolfram syndrome. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 3-P-036.	0.0	0