MicheÃ;l D Scanlon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mimicking the microbial oxidation of elemental sulfur with a biphasic electrochemical cell. Electrochimica Acta, 2022, 401, 139443.	2.6	4
2	On the origin of chaotrope-modulated electrocatalytic activity of cytochrome <i>c</i> at electrified aqueous organic interfaces. Chemical Communications, 2022, 58, 3270-3273.	2.2	2
3	lon-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. Journal of Electroanalytical Chemistry, 2022, 909, 116113.	1.9	3
4	Electrosynthesis of Biocompatible Free-Standing PEDOT Thin Films at a Polarized Liquid Liquid Interface. Journal of the American Chemical Society, 2022, 144, 4853-4862.	6.6	36
5	Electrosynthesis of poly(2,5-dimercapto-1,3,4-thiadiazole) films and their composites with gold nanoparticles at a polarised liquid liquid interface. Electrochimica Acta, 2022, 424, 140677.	2.6	6
6	A soft on/off switch based on the electrochemically reversible H–J interconversion of a floating porphyrin membrane. Chemical Science, 2021, 12, 10227-10232.	3.7	4
7	Electrogeneration of a Free-Standing Cytochrome c─Silica Matrix at a Soft Electrified Interface. Langmuir, 2021, 37, 4033-4041.	1.6	9
8	Modulating the Pro-Apoptotic Activity of Cytochrome C at a Biomimetic Electrified Liquid Liquid Interface. ECS Meeting Abstracts, 2021, MA2021-01, 1817-1817.	0.0	0
9	A Soft On/Off Switch Based on the Electrochemically Reversible H-J Interconversion of a Porphyrin Membrane at an Electrified Liquid Liquid Interface. ECS Meeting Abstracts, 2021, MA2021-01, 1816-1816.	0.0	0
10	Pathway Complexity in Supramolecular Porphyrin Self-Assembly at an Immiscible Liquid–Liquid Interface. Journal of the American Chemical Society, 2021, 143, 9060-9069.	6.6	33
11	Modulating the pro-apoptotic activity of cytochrome c at a biomimetic electrified interface. Science Advances, 2021, 7, eabg4119.	4.7	7
12	Aqueous surface chemistry of gold mesh electrodes in a closed bipolar electrochemical cell. Electrochimica Acta, 2020, 330, 135328.	2.6	3
13	Electrochemically Controlled Ion Dynamics in Porphyrin Nanostructures. Journal of Physical Chemistry C, 2020, 124, 18346-18355.	1.5	5
14	Detection of <i>Pseudomonas aeruginosa</i> quorum sensing molecules at an electrified liquid liquid micro-interface through facilitated proton transfer. Analyst, The, 2020, 145, 7000-7008.	1.7	12
15	Evolution of Hierarchically Layered Cu-Rich Silicide Nanoarchitectures. Crystal Growth and Design, 2020, 20, 6677-6682.	1.4	4
16	Photoâ€recycling the Sacrificial Electron Donor: Towards Sustainable Hydrogen Evolution in a Biphasic System. ChemPhysChem, 2020, 21, 2630-2633.	1.0	4
17	Self-Assembly of Porphyrin Nanostructures at the Interface between Two Immiscible Liquids. Journal of Physical Chemistry C, 2020, 124, 6929-6937.	1.5	16
18	Quantitative Analysis of Redox-Inactive Ions by AC Voltammetry at a Polarized Interface between Two Immiscible Electrolyte Solutions, Analytical Chemistry, 2020, 92, 10521-10530.	3.2	8

MICHEÃIL D SCANLON

#	Article	IF	CITATIONS
19	Membraneless energy conversion and storage using immiscible electrolyte solutions. Current Opinion in Electrochemistry, 2020, 21, 100-108.	2.5	22
20	Mechanistic Study on the Photogeneration of Hydrogen by Decamethylruthenocene. Chemistry - A European Journal, 2019, 25, 12769-12779.	1.7	9
21	Bioelectrochemistry of Cytochrome c in a closed bipolar electrochemical cell. Electrochemistry Communications, 2019, 109, 106600.	2.3	9
22	On the non-ideal behaviour of polarised liquid-liquid interfaces. Electrochimica Acta, 2019, 328, 135110.	2.6	18
23	Monitoring transient changes in the structure of water at a polarised liquid-liquid interface using electrocapillary curves. Electrochemistry Communications, 2019, 109, 106564.	2.3	9
24	Electrochemical Detection of <i>Pseudomonas aeruginosa</i> Quorum Sensing Molecules at a Liquid Liquid Interface. Journal of Physical Chemistry C, 2019, 123, 24643-24650.	1.5	11
25	Closed bipolar electrochemistry in a four-electrode configuration. Physical Chemistry Chemical Physics, 2019, 21, 9627-9640.	1.3	24
26	Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chemical Reviews, 2018, 118, 3722-3751.	23.0	113
27	Simulations employing finite element method at liquid liquid interfaces. Current Opinion in Electrochemistry, 2018, 7, 200-207.	2.5	10
28	Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling. Angewandte Chemie - International Edition, 2017, 56, 2324-2327.	7.2	24
29	Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling. Angewandte Chemie, 2017, 129, 2364-2367.	1.6	6
30	Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties without the Influence of Solid Supports. Journal of Physical Chemistry Letters, 2017, 8, 3564-3575.	2.1	46
31	Mediated water electrolysis in biphasic systems. Physical Chemistry Chemical Physics, 2017, 19, 22700-22710.	1.3	10
32	(Invited) Contactless Photo-Electrochemistry of Dye-Sensitized TiO2 Nanoparticles Floating at Electrified Water-Oil Interfaces. ECS Meeting Abstracts, 2017, , .	0.0	0
33	Enhanced Reactivity of Water Clusters towards Oxidation in Water/Acetonitrile Mixtures. ChemElectroChem, 2016, 3, 2003-2007.	1.7	6
34	Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale, 2016, 8, 7723-7737.	2.8	35
35	Boosting water oxidation layer-by-layer. Physical Chemistry Chemical Physics, 2016, 18, 9295-9304.	1.3	14
36	Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces. Electrochimica Acta, 2016, 197, 362-373.	2.6	49

MICHEÃIL D SCANLON

#	Article	IF	CITATIONS
37	Interfacial Redox Catalysis on Gold Nanofilms at Soft Interfaces. ACS Nano, 2015, 9, 6565-6575.	7.3	74
38	Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles. Chemical Science, 2015, 6, 2705-2720.	3.7	173
39	Decamethylruthenocene Hydride and Hydrogen Formation at Liquid Liquid Interfaces. Journal of Physical Chemistry C, 2015, 119, 25761-25769.	1.5	31
40	Catalysis of water oxidation in acetonitrile by iridium oxide nanoparticles. Chemical Science, 2015, 6, 1761-1769.	3.7	36
41	Fingerprinting the tertiary structure of electroadsorbed lysozyme at soft interfaces by electrostatic spray ionization mass spectrometry. Chemical Communications, 2014, 50, 11829-11832.	2.2	24
42	Gold Metal Liquid-Like Droplets. ACS Nano, 2014, 8, 9471-9481.	7.3	55
43	Nanoporous molybdenum carbide wires as an active electrocatalyst towards the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 10088-10094.	1.3	43
44	A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 387-392.	15.6	972
45	Oxygen Reduction at Soft Interfaces Catalyzed by Inâ€Situâ€Generated Reduced Graphene Oxide. ChemElectroChem, 2014, 1, 59-63.	1.7	30
46	Photo-Ionic Cells: Two Solutions to Store Solar Energy and Generate Electricity on Demand. Journal of Physical Chemistry C, 2014, 118, 16872-16883.	1.5	13
47	Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes. Analytical and Bioanalytical Chemistry, 2013, 405, 3823-3830.	1.9	32
48	Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution. Chemical Science, 2013, 4, 3432.	3.7	75
49	Low-cost industrially available molybdenum boride and carbide as "platinum-like―catalysts for the hydrogen evolution reaction in biphasic liquid systems. Physical Chemistry Chemical Physics, 2013, 15, 2847.	1.3	137
50	Conductive Gold Nanoparticle Mirrors at Liquid/Liquid Interfaces. ACS Nano, 2013, 7, 9241-9248.	7.3	128
51	MoS ₂ Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution. Advanced Functional Materials, 2013, 23, 5326-5333.	7.8	664
52	Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene as a Lightâ€Driven Electron Donor. ChemPhysChem, 2013, 14, 2308-2316.	1.0	34
53	Subtle Changes, Dramatic Effects: Homogeneous Catalysis of the Oxygenâ€Reduction Reaction. ChemCatChem, 2013, 5, 1696-1697.	1.8	6
54	Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochemistry Communications, 2012, 22, 128-132.	2.3	143

MICHEÃIL D SCANLON

#	Article	IF	CITATIONS
55	Characterization of Nanoporous Gold Electrodes for Bioelectrochemical Applications. Langmuir, 2012, 28, 2251-2261.	1.6	96
56	Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chemical Communications, 2012, 48, 6484.	2.2	113
57	Direct electron transfer of bilirubin oxidase (Myrothecium verrucaria) at an unmodified nanoporous gold biocathode. Electrochemistry Communications, 2012, 16, 92-95.	2.3	79
58	Enhanced Electroanalytical Sensitivity via Interface Miniaturisation: Ion Transfer Voltammetry at an Array of Nanometre Liquid–Liquid Interfaces. Electroanalysis, 2011, 23, 1023-1028.	1.5	31
59	The performance of differential pulse stripping voltammetry at micro-liquid–liquid interface arrays. Journal of Electroanalytical Chemistry, 2010, 641, 7-13.	1.9	21
60	Flow-injection amperometry at microfabricated silicon-based μ-liquid–liquid interface arrays. Electrochimica Acta, 2010, 55, 4234-4239.	2.6	11
61	Ion-Transfer Electrochemistry at Arrays of Nanointerfaces between Immiscible Electrolyte Solutions Confined within Silicon Nitride Nanopore Membranes. Analytical Chemistry, 2010, 82, 6115-6123.	3.2	55
62	Voltammetric behaviour of biological macromolecules at arrays of aqueous organogel micro-interfaces. Physical Chemistry Chemical Physics, 2010, 12, 10040.	1.3	40
63	Electrochemical behaviour of hen-egg-white lysozyme at the polarised water/1, 2-dichloroethane interface. Physical Chemistry Chemical Physics, 2009, 11, 2272.	1.3	61
64	Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays – simulations and experiments. Analyst, The, 2009, 134, 148-158.	1.7	64
65	Electrochemical Detection of Oligopeptides at Silicon-Fabricated Micro-Liquidâ^£Liquid Interfaces. Analytical Chemistry, 2008, 80, 5743-5749.	3.2	59
66	Electrochemistry of Non-Redox-Active Poly(propylenimine) and Poly(amidoamine) Dendrimers at Liquidâ^'Liquid Interfaces. Langmuir, 2007, 23, 7356-7364.	1.6	56
67	Voltammetry of chromium(VI) at the liquid liquid interface. Electrochemistry Communications, 2005, 7, 976-982.	2.3	29