
Carla M SgrÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1413325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change and evolutionary adaptation. Nature, 2011, 470, 479-485.	13.7	2,489
2	Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 2011, 4, 709-725.	1.5	661
3	Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, 2011, 4, 326-337.	1.5	617
4	Fundamental Evolutionary Limits in Ecological Traits Drive <i>Drosophila</i> Species Distributions. Science, 2009, 325, 1244-1246.	6.0	381
5	What Can Plasticity Contribute to Insect Responses to Climate Change?. Annual Review of Entomology, 2016, 61, 433-451.	5.7	362
6	Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecology Letters, 2016, 19, 1468-1478.	3.0	200
7	Revisiting Adaptive Potential, Population Size, and Conservation. Trends in Ecology and Evolution, 2017, 32, 506-517.	4.2	182
8	Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 2021, 27, 1692-1703.	4.2	128
9	Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	92
10	Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 145-150.	3.3	67
11	Comparing thermal performance curves across traits: how consistent are they?. Journal of Experimental Biology, 2019, 222, .	0.8	58
12	Aligning science and policy to achieve evolutionarily enlightened conservation. Conservation Biology, 2017, 31, 501-512.	2.4	57
13	Evolutionary capacity of upper thermal limits: beyond single trait assessments. Journal of Experimental Biology, 2014, 217, 1918-24.	0.8	44
14	A dietary sterol trade-off determines lifespan responses to dietary restriction in Drosophila melanogaster females. ELife, 2021, 10, .	2.8	43
15	How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200119.	1.8	36
16	How does parental environment influence the potential for adaptation to global change?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181374.	1.2	34
17	Interacting with change: Diet mediates how larvae respond to their thermal environment. Functional Ecology, 2019, 33, 1940-1951.	1.7	33
18	Understanding managers' and scientists' perspectives on opportunities to achieve more evolutionarily enlightened management in conservation. Evolutionary Applications, 2018, 11, 1371-1388.	1.5	32

CARLA M SGRÃ²

#	Article	IF	CITATIONS
19	Revealing hidden evolutionary capacity to cope with global change. Global Change Biology, 2015, 21, 3356-3366.	4.2	30
20	Pathogen exposure disrupts an organism's ability to cope with thermal stress. Global Change Biology, 2019, 25, 3893-3905.	4.2	29
21	THE EFFECT OF DEVELOPMENTAL TEMPERATURE ON THE GENETIC ARCHITECTURE UNDERLYING SIZE AND THERMAL CLINES IN DROSOPHILA MELANOGASTER AND D. SIMULANS FROM THE EAST COAST OF AUSTRALIA. Evolution; International Journal of Organic Evolution, 2011, 65, 1048-1067.	1.1	26
22	Crossâ€sex genetic correlations and the evolution of sexâ€specific local adaptation: Insights from classical trait clines in <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2018, 72, 1317-1327.	1.1	25
23	Poor understanding of evolutionary theory is a barrier to effective conservation management. Conservation Letters, 2019, 12, e12619.	2.8	25
24	The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change?. Evolutionary Applications, 2017, 10, 267-275.	1.5	21
25	Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions. PLoS Neglected Tropical Diseases, 2021, 15, e0009548.	1.3	16
26	Developmental nutrition modulates metabolic responses to projected climate change. Functional Ecology, 2020, 34, 2488-2502.	1.7	15
27	Quantifying the relative contributions of the X chromosome, autosomes, and mitochondrial genome to local adaptation*. Evolution; International Journal of Organic Evolution, 2019, 73, 262-277.	1.1	14
28	The influence of immune activation on thermal tolerance along a latitudinal cline. Journal of Evolutionary Biology, 2020, 33, 1224-1234.	0.8	13
29	Conservation practitioners' understanding of how to manage evolutionary processes. Conservation Biology, 2019, 33, 993-1001.	2.4	11
30	Thermal performance curves reveal shifts in optima, limits, and breadth in early life. Journal of Experimental Biology, 2020, 223, .	0.8	10
31	Temperature and pathogen exposure act independently to drive host phenotypic trajectories. Biology Letters, 2021, 17, 20210072.	1.0	10
32	Thermal Performance Curves Are Shaped by Prior Thermal Environment in Early Life. Frontiers in Physiology, 2021, 12, 738338.	1.3	10
33	Does local adaptation along a latitudinal cline shape plastic responses to combined thermal and nutritional stress?. Evolution; International Journal of Organic Evolution, 2020, 74, 2073-2087.	1.1	9
34	Pathogen exposure reduces sexual dimorphism in a host's upper thermal limits. Ecology and Evolution, 2020, 10, 12851-12859.	0.8	9
35	The proximate sources of genetic variation in body size plasticity: The relative contributions of feeding behaviour and development in Drosophila melanogaster. Journal of Insect Physiology, 2021, 135, 104321.	0.9	1