
Craig A Radford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1413190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative sound detection abilities of four decapod crustaceans. Journal of Experimental Biology, 2022, 225, .	0.8	8
2	Small recreational boats: a ubiquitous source of sound pollution in shallow coastal habitats. Marine Pollution Bulletin, 2022, 174, 113295.	2.3	14
3	Sounding the Call for a Global Library of Underwater Biological Sounds. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	28
4	Energy conservation characterizes sleep in sharks. Biology Letters, 2022, 18, 20210259.	1.0	13
5	Behavioural sleep in two species of buccal pumping sharks (<i>Heterodontus portusjacksoni</i> and) Tj ETQq1 1	0.78431 1.7	4 rgBT /Over
6	Passive Acoustic Monitoring Reveals Spatio-Temporal Distributions of Antarctic and Pygmy Blue Whales Around Central New Zealand. Frontiers in Marine Science, 2021, 7, .	1.2	10
7	The soundscape of the Anthropocene ocean. Science, 2021, 371, .	6.0	376
8	Marine soundscape variation reveals insights into baleen whales and their environment: a case study in central New Zealand. Royal Society Open Science, 2021, 8, 201503.	1.1	9
9	Ocean acidification effects on fish hearing. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202754.	1.2	13
10	Soundscape of protected and unprotected tropical Atlantic coastal coral reefs. Scientia Marina, 2021, 85, 5-14.	0.3	5
11	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 2021, 263, 109175.	1.9	96
12	A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges. Global Change Biology, 2021, 27, 4839-4848.	4.2	32
13	Acoustic particle motion detection in the snapping shrimp (Alpheus richardsoni). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 641-655.	0.7	22
14	Listening forward: approaching marine biodiversity assessments using acoustic methods. Royal Society Open Science, 2020, 7, 201287.	1.1	79
15	Diverse Activity Rhythms in Sharks (Elasmobranchii). Journal of Biological Rhythms, 2020, 35, 476-488.	1.4	10
16	Populationâ€level consequences of seismic surveys on fishes: An interdisciplinary challenge. Fish and Fisheries, 2019, 20, 653-685.	2.7	38
17	The use of evoked potentials to determine sensory sub-modality contributions to acoustic and hydrodynamic sensing. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 855-865.	0.7	2
18	Ecology of fish hearing. Journal of Fish Biology, 2019, 95, 39-52.	0.7	38

CRAIG A RADFORD

#	Article	IF	CITATIONS
19	Vessel noise cuts down communication space for vocalizing fish and marine mammals. Global Change Biology, 2018, 24, 1708-1721.	4.2	88
20	Barking mad: The vocalisation of the John Dory, Zeus faber. PLoS ONE, 2018, 13, e0204647.	1.1	6
21	The potential for the anterior lateral line to function for sound localization in toadfish (<i>Opsanus) Tj ETQq1 1</i>	0.784314 0.8	rgBT /Overlo
22	The effect of motorboat sound on Australian snapper <i>Pagrus auratus</i> inside and outside a marine reserve. Ecology and Evolution, 2018, 8, 6438-6448.	0.8	16
23	Acoustic Conditions Affecting Sound Communication in Air and Underwater. Springer Handbook of Auditory Research, 2018, , 109-144.	0.3	28
24	Marine bioacoustics. Current Biology, 2017, 27, R502-R507.	1.8	20
25	Hearing in the paddle crab, Ovalipes catharus. Proceedings of Meetings on Acoustics, 2016, , .	0.3	9
26	Auditory sensitivity in aquatic animals. Journal of the Acoustical Society of America, 2016, 139, 3097-3101.	0.5	6
27	The use of baited underwater video to monitor fish behavior in response to boat motor noise. Proceedings of Meetings on Acoustics, 2016, , .	0.3	5
28	The potential for vessel noise to mask biologically important sounds within ecologically significant embayments. Ocean and Coastal Management, 2016, 127, 63-73.	2.0	42
29	Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods in Ecology and Evolution, 2016, 7, 713-724.	2.2	126
30	Effects of Underwater Turbine Noise on Crab Larval Metamorphosis. Advances in Experimental Medicine and Biology, 2016, 875, 847-852.	0.8	5
31	The Potential Overlapping Roles of the Ear and Lateral Line in Driving "Acoustic―Responses. Advances in Experimental Medicine and Biology, 2016, 877, 255-270.	0.8	15
32	Vocalisation Repertoire of Female Bluefin Gurnard (Chelidonichthys kumu) in Captivity: Sound Structure, Context and Vocal Activity. PLoS ONE, 2016, 11, e0149338.	1.1	7
33	Potential Competitive Dynamics of Acoustic Ecology. Advances in Experimental Medicine and Biology, 2016, 875, 895-900.	0.8	1
34	Eavesdropping on the Kaipara Harbour: characterising underwater soundscapes within a seagrass bed and a subtidal mudflat. New Zealand Journal of Marine and Freshwater Research, 2015, 49, 247-258.	0.8	8
35	Vocalisations of the bigeye <i>Pempheris adspersa</i> : characteristics, source level and active space. Journal of Experimental Biology, 2015, 218, 940-948.	0.8	31
36	Soundscapes and living communities in coral reefs: temporal and spatial variation. Marine Ecology - Progress Series, 2015, 524, 125-135.	0.9	72

CRAIG A RADFORD

#	Article	IF	CITATIONS
37	Anterior lateral line nerve encoding to tones and play back vocalisations in free swimming oyster toadfish, <i>Opsanus tau</i> . Journal of Experimental Biology, 2014, 217, 1570-9.	0.8	18
38	The cumulative effect on sound levels from multiple underwater anthropogenic sound sources in shallow coastal waters. Journal of Applied Ecology, 2014, 51, 23-30.	1.9	24
39	Snapper (<i>Chrysophrys auratus</i>): a review of life history and key vulnerabilities in New Zealand. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 256-283.	0.8	69
40	Adjacent coral reef habitats produce different underwater sound signatures. Marine Ecology - Progress Series, 2014, 505, 19-28.	0.9	58
41	The contribution of the lateral line to 'hearing' in fish. Journal of Experimental Biology, 2013, 216, 1484-90.	0.8	57
42	Environmental influences on the larval recruitment dynamics of snapper, Chrysophrys auratus (Sparidae). Marine and Freshwater Research, 2013, 64, 726.	0.7	6
43	A proposed mechanism for the observed ontogenetic improvement in the hearing ability of hapuka (Polyprion oxygeneios). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 653-661.	0.7	8
44	The diel variation and spatial extent of the underwater sound around a fish aggregation device (FAD). Fisheries Research, 2013, 148, 9-17.	0.9	8
45	Contributions of the Leigh Marine Laboratory to marine science, 1962–2012: sensory neuroethology. New Zealand Journal of Marine and Freshwater Research, 2013, 47, 409-425.	0.8	1
46	Fish larvae prefer coral over algal water cues: implications of coral reef degradation. Marine Ecology - Progress Series, 2013, 475, 303-307.	0.9	35
47	A novel hearing specialization in the New Zealand bigeye, <i>Pempheris adspersa</i> . Biology Letters, 2013, 9, 20130163.	1.0	10
48	Balancing the odds: the relationship between growth and energy storage in juvenile snapper (Chrysophrys auratus : Sparidae). Marine and Freshwater Research, 2013, 64, 1003.	0.7	6
49	Location, location, location: finding a suitable home among the noise. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3622-3631.	1.2	81
50	Pressure and particle motion detection thresholds in fish: a re-examination of salient auditory cues in teleosts. Journal of Experimental Biology, 2012, 215, 3429-35.	0.8	64
51	Localised spawning omission in snapper, Chrysophrys auratus (Sparidae). Marine and Freshwater Research, 2012, 63, 150.	0.7	7
52	Variation in the growth of larval and juvenile snapper, Chrysophrys auratus (Sparidae). Marine and Freshwater Research, 2012, 63, 1231.	0.7	16
53	Effects of Underwater Noise on Larval settlement. Advances in Experimental Medicine and Biology, 2012, 730, 371-374.	0.8	8
54	Can larval snapper, Pagrus auratus, smell their new home?. Marine and Freshwater Research, 2012, 63, 898.	0.7	26

CRAIG A RADFORD

#	Article	IF	CITATIONS
55	Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae. PLoS ONE, 2012, 7, e51790.	1.1	43
56	Temporal patterns in the post-larval supply of two crustacean taxa in Rangiroa Atoll, French Polynesia. Fisheries Science, 2012, 78, 75-80.	0.7	0
57	Chronic low-intensity noise exposure affects the hearing thresholds of juvenile snapper. Marine Ecology - Progress Series, 2012, 466, 225-232.	0.9	23
58	Juvenile coral reef fish use sound to locate habitats. Coral Reefs, 2011, 30, 295-305.	0.9	114
59	Behavioural Response Thresholds in New Zealand Crab Megalopae to Ambient Underwater Sound. PLoS ONE, 2011, 6, e28572.	1.1	44
60	Modelling a reef as an extended sound source increases the predicted range at which reef noise may be heard by fish larvae. Marine Ecology - Progress Series, 2011, 438, 167-174.	0.9	49
61	Induction of settlement in crab megalopae by ambient underwater reef sound. Behavioral Ecology, 2010, 21, 113-120.	1.0	84
62	Localised coastal habitats have distinct underwater sound signatures. Marine Ecology - Progress Series, 2010, 401, 21-29.	0.9	164
63	Temporal patterns in ambient noise of biological origin from a shallow water temperate reef. Oecologia, 2008, 156, 921-929.	0.9	150
64	ORIENTATED SWIMMING BEHAVIOUR OF CRAB POSTLARVAE IN RESPONSE TO REEF SOUND. Bioacoustics, 2008, 17, 87-89.	0.7	5
65	AMBIENT NOISE IN SHALLOW TEMPERATE WATERS AROUND NORTHEASTERN NEW ZEALAND. Bioacoustics, 2008, 17, 26-28.	0.7	1
66	Specific dynamic action as an indicator of carbohydrate digestion in juvenile spiny lobsters, Jasus edwardsii. Marine and Freshwater Research, 2008, 59, 841.	0.7	9
67	Resonating sea urchin skeletons create coastal choruses. Marine Ecology - Progress Series, 2008, 362, 37-43.	0.9	99
68	Effects of dietary carbohydrate on growth of juvenile New Zealand rock lobsters, Jasus edwardsii. Aquaculture, 2007, 273, 151-157.	1.7	17
69	Does Morning as Opposed to Night-time Feeding Affect Growth in Juvenile Spiny Lobsters, Jasus edwardsh?. Journal of the World Aquaculture Society, 2005, 36, 480-488.	1.2	9
70	Bubbled waters: The noise generated by underwater breathing apparatus. Marine and Freshwater Behaviour and Physiology, 2005, 38, 259-267.	0.4	43
71	Temporal variation in the specific dynamic action of juvenile New Zealand rock lobsters, Jasus edwardsii. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 139, 1-9.	0.8	30