
Federica Rigoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1412775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface roughness control in nanolaminate coatings of chromium and tungsten nitrides. Micro and Nano Engineering, 2022, 14, 100107.	1.4	5
2	Fast-tracking of NH3 interaction with ZnO nanorods and C/ZnO hybrid nanostructures by operando spectroscopy. Applied Surface Science, 2022, 590, 153067.	3.1	2
3	The beauty of being complex: Prussian blue analogues as selective catalysts and photocatalysts in the degradation of ciprofloxacin. Journal of Catalysis, 2022, 410, 307-319.	3.1	3
4	The Impact of Graphene Oxide on Polycaprolactone PCL Surfaces: Antimicrobial Activity and Osteogenic Differentiation of Mesenchymal Stem Cell. Coatings, 2022, 12, 799.	1.2	4
5	Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy, 2021, 81, 105664.	8.2	46
6	Nanoscale characterization of an all-oxide core–shell nanorod heterojunction using intermodulation atomic force microscopy (AFM) methods. Nanoscale Advances, 2021, 3, 4388-4394.	2.2	1
7	A simple and efficient visible light photodetector based on Co3O4/ZnO composite. Optical and Quantum Electronics, 2021, 53, 1.	1.5	8
8	A preliminary evaluation of chemical interaction between sanitizing products and silk. Journal of Cultural Heritage, 2021, 51, 1-13.	1.5	3
9	Large-scale CMOS-compatible process for silicon nanowires growth and BC8 phase formation. Solid-State Electronics, 2021, 186, 108093.	0.8	2
10	Sustainable Strategies in the Synthesis of Lignin Nanoparticles for the Release of Active Compounds: A Comparison. ChemSusChem, 2020, 13, 4759-4767.	3.6	20
11	Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors, 2020, 8, 19.	1.8	14
12	Adaptive nanolaminate coating by atomic layer deposition. Thin Solid Films, 2019, 692, 137631.	0.8	1
13	Semi-Transparent p-Cu ₂ O/n-ZnO Nanoscale-Film Heterojunctions for Photodetection and Photovoltaic Applications. ACS Applied Nano Materials, 2019, 2, 4358-4366.	2.4	49
14	Self-Powered Photodetectors Based on Core–Shell ZnO–Co ₃ O ₄ Nanowire Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 23454-23462.	4.0	71
15	Tunable Localized Surface Plasmon Resonance and Broadband Visible Photoresponse of Cu Nanoparticles/ZnO Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 40958-40965.	4.0	26
16	Local Structure and Point-Defect-Dependent Area-Selective Atomic Layer Deposition Approach for Facile Synthesis of p-Cu ₂ 0/n-ZnO Segmented Nanojunctions. ACS Applied Materials & Interfaces, 2018, 10, 37671-37678.	4.0	17
17	ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors. Nano Energy, 2018, 51, 308-316.	8.2	94
18	Improved recovery time and sensitivity to H2 and NH3 at room temperature with SnOx vertical nanopillars on ITO. Scientific Reports, 2018, 8, 10028.	1.6	18

Federica Rigoni

#	Article	lF	CITATIONS
19	Anomalous gas sensing behaviors to reducing agents of hydrothermally grown α-Fe2O3 nanorods. Sensors and Actuators B: Chemical, 2018, 273, 1237-1245.	4.0	17
20	Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers. Nanotechnology, 2017, 28, 255502.	1.3	32
21	A cross-functional nanostructured platform based on carbon nanotube-Si hybrid junctions: where photon harvesting meets gas sensing. Scientific Reports, 2017, 7, 44413.	1.6	10
22	Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules. Nanotechnology, 2017, 28, 035502.	1.3	19
23	Transfer of CVD-grown graphene for room temperature gas sensors. Nanotechnology, 2017, 28, 414001.	1.3	30
24	Gas sensing applications of the inverse spinel zinc tin oxide. Materials Science in Semiconductor Processing, 2017, 71, 461-469.	1.9	10
25	ZnO and SnO <inf>2</inf> one-dimensional sensors for detection of hazardous gases. , 2017, ,		4
26	Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy). Sensors, 2017, 17, 714.	2.1	126
27	Single Metal Oxide Nanowire devices for Ammonia and Other Gases Detection in Humid Atmosphere. Procedia Engineering, 2016, 168, 1052-1055.	1.2	10
28	Co/ZnO nanorods system for magnetic gas sensing applications. , 2016, , .		0
29	Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods. Nanotechnology, 2016, 27, 145605.	1.3	3
30	Graphene plasmon enhanced optical properties in ZnO micro-structures. , 2016, , .		0
31	Environmental Monitoring of Low-ppb Ammonia Concentrations Based on Single-wall Carbon Nanotube Chemiresistor Gas Sensors: Detection Limits, Response Dynamics, and Moisture Effects. Procedia Engineering, 2014, 87, 716-719.	1.2	19
32	High sensitivity, moisture selective, ammonia gas sensors based on single-walled carbon nanotubes functionalized with indium tin oxide nanoparticles. Carbon, 2014, 80, 356-363.	5.4	86
33	Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment. Analyst, The, 2013, 138, 7392.	1.7	105
34	Coordination chemistry for antibacterial materials: a monolayer of a Cu2+ 2,2′-bipyridine complex grafted on a glass surface. Dalton Transactions, 2013, 42, 4552.	1.6	21
35	Development of low-cost ammonia gas sensors and data analysis algorithms to implement a monitoring grid of urban environmental pollutants. Journal of Environmental Monitoring, 2012, 14, 1565.	2.1	25
36	Controlled synthesis of carbon nanostructures using aligned ZnO nanorods as templates. Carbon, 2012, 50, 5472-5480.	5.4	22