Davide Spanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1412364/publications.pdf Version: 2024-02-01

DAVIDE SDANII

#	Article	IF	CITATIONS
1	Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 198-205.	20.2	82
2	Unfolding the interaction between microplastics and (trace) elements in water: A critical review. Water Research, 2021, 204, 117637.	11.3	63
3	Templated Dewetting–Alloying of NiCu Bilayers on TiO ₂ Nanotubes Enables Efficient Noble-Metal-Free Photocatalytic H ₂ Evolution. ACS Catalysis, 2018, 8, 5298-5305.	11.2	61
4	Biochar as an alternative sustainable platform for sensing applications: A review. Microchemical Journal, 2020, 159, 105506.	4.5	56
5	Comprehensive comparison of microalgae-derived biochar from different feedstocks: A prospective study for future environmental applications. Algal Research, 2020, 52, 102103.	4.6	54
6	An Operando X-ray Absorption Spectroscopy Study of a NiCuâ^'TiO ₂ Photocatalyst for H ₂ Evolution. ACS Catalysis, 2020, 10, 8293-8302.	11.2	46
7	One-minute highly selective Cr(VI) determination at ultra-trace levels: An ICP-MS method based on the on-line trapping of Cr(III). Journal of Hazardous Materials, 2021, 412, 125280.	12.4	33
8	Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts, 2021, 11, 1048.	3.5	27
9	A Dewettedâ€Dealloyed Nanoporous Pt Coâ€Catalyst Formed on TiO ₂ Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H ₂ Production. Chemistry - an Asian Journal, 2020, 15, 301-309.	3.3	25
10	Photocatalytic reduction and scavenging of Hg(II) over templated-dewetted Au on TiO2 nanotubes. Photochemical and Photobiological Sciences, 2019, 18, 1046-1055.	2.9	20
11	Evaluating the Environmental Impacts of Personal Protective Equipment Use by the General Population during the COVID-19 Pandemic: A Case Study of Lombardy (Northern Italy). Environments - MDPI, 2021, 8, 33.	3.3	19
12	Bioaccumulation and biomagnification in elasmobranchs: A concurrent assessment of trophic transfer of trace elements in 12 species from the Indian Ocean. Marine Pollution Bulletin, 2021, 172, 112853.	5.0	19
13	Thermalâ€Oxidative Growth of Substoichiometric WO _{3–<i>x</i>} Nanowires at Mild Conditions. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000235.	2.4	17
14	ATR-MIR spectroscopy to predict commercial milk major components: A comparison between a handheld and a benchtop instrument. Chemometrics and Intelligent Laboratory Systems, 2020, 200, 103995.	3.5	17
15	High-throughput, Multi-batch System for the Efficient Microwave Digestion of Biological Samples. Analytical Sciences, 2020, 36, 889-892.	1.6	17
16	Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. Electrochimica Acta, 2018, 292, 828-837.	5.2	13
17	Introducing Frontal Chromatography–Inductively Coupled Plasma-Mass Spectrometry as a Fast Method for Speciation Analysis: The Case of Inorganic Arsenic. Analytical Chemistry, 2019, 91, 13810-13817.	6.5	13
18	Exploring the Adsorption of Pb on Microalgae-Derived Biochar: A Versatile Material for Environmental Remediation and Electroanalytical Applications. Chemosensors, 2022, 10, 168.	3.6	10

DAVIDE SPANU

#	Article	IF	CITATIONS
19	Selective organomercury determination by ICP-MS made easy. Analytica Chimica Acta, 2022, 1206, 339553.	5.4	8
20	A viscous film sample chamber for Laser Ablation Inductively Coupled Plasma – Mass Spectrometry. Talanta, 2018, 179, 100-106.	5.5	7
21	Geochemical Markers as a Tool for the Characterization of a Multi-Layer Urban Aquifer: The Case Study of Como (Northern Italy). Water (Switzerland), 2022, 14, 124.	2.7	7
22	Accumulation of Selected Trace Elements in Shads from Three Lakes: First Insights from Italian Pre-Alpine Area. Biological Trace Element Research, 2021, 199, 4753-4758.	3.5	5
23	Understanding microwave vessel contamination by chloride species. Talanta, 2016, 159, 29-33.	5.5	4
24	Integration of photogrammetry from unmanned aerial vehicles, field measurements and discrete fracture network modeling to understand groundwater flow in remote settings: test and comparison with geochemical markers in an Alpine catchment. Hydrogeology Journal, 2021, 29, 1203-1218.	2.1	4
25	How to Clean and Safely Remove HF from Acid Digestion Solutions for Ultra-Trace Analysis: A Microwave-Assisted Vessel-Inside-Vessel Protocol. Methods and Protocols, 2022, 5, 30.	2.0	4
26	Quantitative extraction and determination of trace elements by surfactant-free liquid-liquid microextraction from aviation and motor fuels. Fuel, 2022, 310, 122458.	6.4	3
27	Exploiting Laser-Ablation ICP-MS for the Characterization of Salt-Derived Bismuth Films on Screen-Printed Electrodes: A Preliminary Investigation. Biosensors, 2020, 10, 119.	4.7	2
28	Quantitative Determination of the Surface Distribution of Supported Metal Nanoparticles: A Laser Ablation–ICP–MS Based Approach. Chemosensors, 2021, 9, 77.	3.6	2
29	Template-Dewetted Au Nanoparticles on TiO ₂ Nanocavities for Photocatalytic Reduction and Scavenging of Hg(II). ECS Meeting Abstracts, 2020, MA2020-01, 2717-2717.	0.0	1
30	Development of a Scanning Chemical Vapour Deposition Reactor for the realization of patterned and non-patterned depositions: a preliminary overview. Thin Solid Films, 2021, 717, 138446.	1.8	0
31	Dewetting-Alloying of Nicu Bilayers on TiO2 Surfaces for Noble Metal-Free Photocatalytic H2 Evolution. ECS Meeting Abstracts, 2020, MA2020-01, 892-892.	0.0	0