Magnus Skoglundh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1411609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chasing PtO species in ceria supported platinum during CO oxidation extinction with correlative operando spectroscopic techniques. Journal of Catalysis, 2022, 409, 1-11.	3.1	13
2	<i>In situ</i> DRIFT studies on N ₂ O formation over Cu-functionalized zeolites during ammonia-SCR. Catalysis Science and Technology, 2022, 12, 3921-3936.	2.1	4
3	Methoxy ad-species in MFI zeotypes during methane exposure and methanol desorption followed by in situ IR spectroscopy. Catalysis Today, 2021, 369, 123-128.	2.2	4
4	Effect of biofuel- and lube oil-originated sulfur and phosphorus on the performance of Cu-SSZ-13 and V2O5-WO3/TiO2 SCR catalysts. Catalysis Today, 2021, 360, 326-339.	2.2	21
5	Acidity as Descriptor for Methanol Desorption in B-, Ga- and Ti-MFI Zeotypes. Catalysts, 2021, 11, 97.	1.6	5
6	Probing surface-sensitive redox properties of VO _x /TiO ₂ catalyst nanoparticles. Nanoscale, 2021, 13, 7266-7272.	2.8	9
7	The Role of H ⁺ - and Cu ⁺ -Sites for N ₂ O Formation during NH ₃ -SCR over Cu-CHA. Journal of Physical Chemistry C, 2021, 125, 4595-4601.	1.5	28
8	The Impact of Lanthanum and Zeolite Structure on Hydrocarbon Storage. Catalysts, 2021, 11, 635.	1.6	7
9	Direct measurement of enthalpy and entropy changes in NH 3 promoted O 2 activation over Cuâ^'CHA at low temperature. ChemCatChem, 2021, 13, 2577-2582.	1.8	11
10	Characterization Method for Gas Flow Reactor Experiments—NH3 Adsorption on Vanadium-Based SCR Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 11399-11411.	1.8	3
11	Hampered PdO Redox Dynamics by Water Suppresses Lean Methane Oxidation over Realistic Palladium Catalysts. ChemCatChem, 2021, 13, 3765-3771.	1.8	15
12	N ₂ O Formation during NH ₃ -SCR over Different Zeolite Frameworks: Effect of Framework Structure, Copper Species, and Water. Industrial & Engineering Chemistry Research, 2021, 60, 17826-17839.	1.8	24
13	First-Principles Microkinetic Model for Low-Temperature NH ₃ -Assisted Selective Catalytic Reduction of NO over Cu-CHA. ACS Catalysis, 2021, 11, 14395-14407.	5.5	25
14	Local anisotropy in single crystals of zeotypes with the MFI framework structure evidenced by polarised Raman spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 1640-1654.	1.3	10
15	Palladium dispersion effects on wet methane oxidation kinetics. Catalysis Science and Technology, 2020, 10, 5460-5469.	2.1	15
16	Total oxidation of methane over Pd/Al ₂ O ₃ at pressures from 1 to 10 atm. Catalysis Science and Technology, 2020, 10, 5480-5486.	2.1	5
17	Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts, 2020, 10, 552.	1.6	2
18	CO2 Methanation over Rh/CeO2 Studied with Infrared Modulation Excitation Spectroscopy and Phase Sensitive Detection. Catalysts, 2020, 10, 601.	1.6	11

#	Article	IF	CITATIONS
19	Desorption products during linear heating of copper zeolites with pre-adsorbed methanol. Physical Chemistry Chemical Physics, 2020, 22, 6809-6817.	1.3	1
20	A Complete Multisite Reaction Mechanism for Low-Temperature NH ₃ -SCR over Cu-CHA. ACS Catalysis, 2020, 10, 5646-5656.	5.5	118
21	Zeolite Beta Doped with La, Fe, and Pd as a Hydrocarbon Trap. Catalysts, 2020, 10, 173.	1.6	8
22	Tuned Acidity for Catalytic Reactions: Synthesis and Characterization of Fe- and Al-MFI Zeotypes. Topics in Catalysis, 2019, 62, 689-698.	1.3	6
23	Water Inhibition in Methane Oxidation over Alumina Supported Palladium Catalysts. Journal of Physical Chemistry C, 2019, 123, 25724-25737.	1.5	43
24	Multiscale reactor modelling of total pressure effects on complete methane oxidation over Pd/Al ₂ O ₃ . Catalysis Science and Technology, 2019, 9, 3055-3065.	2.1	3
25	Structure–function relationship for CO ₂ methanation over ceria supported Rh and Ni catalysts under atmospheric pressure conditions. Catalysis Science and Technology, 2019, 9, 1644-1653.	2.1	61
26	Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation. Catalysts, 2019, 9, 1014.	1.6	9
27	Direct observation of atomically-resolved silver species on a silver alumina catalyst active for selective catalytic reduction of nitrogen oxides. Catalysis Science and Technology, 2019, 9, 6213-6216.	2.1	5
28	Chemical poisoning by zinc and phosphorous of Pt/Ba/Al2O3 NOx storage catalysts. Applied Catalysis A: General, 2019, 571, 158-169.	2.2	2
29	Interpretation of NH3-TPD Profiles from Cu-CHA Using First-Principles Calculations. Topics in Catalysis, 2019, 62, 93-99.	1.3	60
30	Chemical aging of Cu-SSZ-13 SCR catalysts for heavy-duty vehicles – Influence of sulfur dioxide. Catalysis Today, 2019, 320, 72-83.	2.2	35
31	Structure–function relationship during CO ₂ methanation over Rh/Al ₂ O ₃ and Rh/SiO ₂ catalysts under atmospheric pressure conditions. Catalysis Science and Technology, 2018, 8, 2686-2696.	2.1	26
32	Oxygen step-response experiments for methane oxidation over Pd/Al2O3: An in situ XAFS study. Catalysis Communications, 2018, 109, 24-27.	1.6	14
33	Effect of Al-distribution on oxygen activation over Cu–CHA. Catalysis Science and Technology, 2018, 8, 2131-2136.	2.1	47
34	Water–gas-shift assisted ammonia formation over Pd/Ce/alumina. Catalysis Today, 2018, 307, 169-174.	2.2	14
35	Modelling complete methane oxidation over palladium oxide in a porous catalyst using first-principles surface kinetics. Catalysis Science and Technology, 2018, 8, 508-520.	2.1	17
36	Methane adsorption and methanol desorption of copper modified boron silicate. RSC Advances, 2018, 8, 36369-36374.	1.7	3

#	Article	IF	CITATIONS
37	Copper-Modified Zeolites and Silica for Conversion of Methane to Methanol. Catalysts, 2018, 8, 545.	1.6	25
38	Gas-Phase Phosphorous Poisoning of a Pt/Ba/Al2O3 NOx Storage Catalyst. Catalysts, 2018, 8, 155.	1.6	6
39	Catalytically Active Pd–Ag Alloy Nanoparticles Synthesized in Microemulsion Template. Langmuir, 2018, 34, 9754-9761.	1.6	19
40	Surface Species and Metal Oxidation State during H2-Assisted NH3-SCR of NOx over Alumina-Supported Silver and Indium. Catalysts, 2018, 8, 38.	1.6	18
41	First Principles Calculations of Palladium Nanoparticle XANES Spectra. Topics in Catalysis, 2017, 60, 283-288.	1.3	28
42	Catalytic hydrogenation of CO ₂ to methane over supported Pd, Rh and Ni catalysts. Catalysis Science and Technology, 2017, 7, 1086-1094.	2.1	96
43	SO2 adsorption on silica supported iridium. Journal of Chemical Physics, 2017, 146, 084701.	1.2	4
44	Study of methane oxidation over alumina supported Pd–Pt catalysts using <i>operando</i> DRIFTS/MS and <i>in situ</i> XAS techniques. Journal of Lithic Studies, 2017, 3, 24-32.	0.1	14
45	Nanofabricated Catalyst Particles for the Investigation of Catalytic Carbon Oxidation by Oxygen Spillover. Langmuir, 2017, 33, 4903-4912.	1.6	6
46	Threeâ€Ðimensional Probing of Catalyst Ageing on Different Length Scales: A Case Study of Changes in Microstructure and Activity for CO Oxidation of a Pt–Pd/Al ₂ O ₃ Catalyst. ChemCatChem, 2017, 9, 3544-3553.	1.8	2
47	Ammonia formation from nitric oxide over Pd-based catalysts in multicomponent feed gas compositions. Catalysis Communications, 2017, 95, 26-30.	1.6	8
48	Methane oxidation over Pd/Al2O3 under rich/lean cycling followed by operando XAFS and modulation excitation spectroscopy. Journal of Catalysis, 2017, 356, 237-245.	3.1	48
49	CO Oxidation and Site Speciation for Alloyed Palladium–Platinum Model Catalysts Studied by <i>in Situ</i> FTIR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 26321-26329.	1.5	14
50	Lean NOx reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends. Applied Catalysis B: Environmental, 2017, 202, 42-50.	10.8	35
51	Functionalization of SSZ-13 and Fe-Beta with Copper by NH3 and NO Facilitated Solid-State Ion-Exchange. Catalysts, 2017, 7, 232.	1.6	11
52	Methanol Desorption from Cu-ZSM-5 Studied by <i>In Situ</i> Infrared Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 27389-27398.	1.5	23
53	Mechanism for Solid-State Ion Exchange of Cu ⁺ into Zeolites. Journal of Physical Chemistry C, 2016, 120, 29182-29189.	1.5	33
54	The structure–function relationship for alumina supported platinum during the formation of ammonia from nitrogen oxide and hydrogen in the presence of oxygen. Physical Chemistry Chemical Physics, 2016, 18, 10850-10855.	1.3	2

#	Article	IF	CITATIONS
55	Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces. ACS Catalysis, 2016, 6, 3277-3286.	5.5	43
56	Ammonia formation over Pd/Al2O3 modified with cerium and barium. Catalysis Today, 2016, 267, 210-216.	2.2	13
57	Characterization of the active species in the silver/alumina system for lean NO reduction with methanol. Catalysis Today, 2016, 267, 76-81.	2.2	4
58	Characterization of Surface Structure and Oxidation/Reduction Behavior of Pd–Pt/Al ₂ O ₃ Model Catalysts. Journal of Physical Chemistry C, 2016, 120, 28009-28020.	1.5	25
59	Passive SCR: The Effect of H \$\$_2\$\$ 2 to NO Ratio on the Formation of NH \$\$_3\$\$ 3 Over Alumina Supported Platinum and Palladium Catalysts. Topics in Catalysis, 2016, 59, 970-975.	1.3	7
60	Silver/alumina for methanol-assisted lean NO reduction—On the influence of silver species and hydrogen formation. Applied Catalysis B: Environmental, 2016, 180, 291-300.	10.8	16
61	Methyl crotonate hydrogenation over Pt: Effects of support and metal dispersion. Applied Catalysis A: General, 2016, 511, 106-116.	2.2	6
62	Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM. Surface Science, 2016, 648, 278-283.	0.8	15
63	Unsteady-state operation of supported platinum catalysts for high conversion of methane. Chemical Engineering Journal, 2016, 292, 321-325.	6.6	10
64	Hydrogen-assisted SCR of NO over alumina-supported silver and indium catalysts using C2-hydrocarbons and oxygenates. Applied Catalysis B: Environmental, 2016, 181, 403-412.	10.8	33
65	Quantification of Urea-spray Non-uniformity Effects on the H2-assistedNO Reduction and NH3 Slip over an Ag/Al2O3 Catalyst. Energy Procedia, 2015, 75, 2317-2322.	1.8	3
66	Revealing local variations in nanoparticle size distributions in supported catalysts: a generic TEM specimen preparation method. Journal of Microscopy, 2015, 260, 125-132.	0.8	8
67	Chemistry of Supported Palladium Nanoparticles during Methane Oxidation. ACS Catalysis, 2015, 5, 2481-2489.	5.5	98
68	Role of hydrogen formation and silver phase for methanol-SCR over silver/alumina. Catalysis Today, 2015, 258, 454-460.	2.2	1
69	Transient Structures of PdO during CO Oxidation over Pd(100). Journal of Physical Chemistry C, 2015, 119, 15469-15476.	1.5	41
70	Methanol Assisted Lean NOx Reduction Over Ag–Al2O3—Influence of Hydrogen and Silver Loading. Topics in Catalysis, 2015, 58, 977-983.	1.3	4
71	NH3-SCR Activity of H-BEA and Fe-BEA After Potassium Exposure. Topics in Catalysis, 2015, 58, 1012-1018.	1.3	3
72	Deactivation mechanisms of iron-exchanged zeolites for NH3-SCR applications. Catalysis Today, 2015, 258, 432-440.	2.2	12

#	Article	IF	CITATIONS
73	Solid-State Ion-Exchange of Copper into Zeolites Facilitated by Ammonia at Low Temperature. ACS Catalysis, 2015, 5, 16-19.	5.5	95
74	Kinetic modeling of Feâ€BEA as NH ₃ â€6CR catalyst—effect of phosphorous. AICHE Journal, 2015, 61, 215-223.	1.8	10
75	Ammonia formation over supported platinum and palladium catalysts. Applied Catalysis B: Environmental, 2015, 165, 10-19.	10.8	32
76	In Situ Plasmonic Sensing of Platinum Model Catalyst Sintering on Different Oxide Supports and in O ₂ and NO ₂ Atmospheres with Different Concentrations. ACS Catalysis, 2015, 5, 426-432.	5.5	18
77	Selectivity and kinetics of methyl crotonate hydrogenation over Pt/Al ₂ O ₃ . Catalysis Science and Technology, 2015, 5, 1716-1730.	2.1	14
78	Chemical deactivation of H-BEA and Fe-BEA as NH3-SCR catalysts—effect of potassium. Applied Catalysis B: Environmental, 2015, 166-167, 277-286.	10.8	33
79	Quantitative surface structure determination using in situ high-energy SXRD: Surface oxide formation on Pd(100) during catalytic CO oxidation. Surface Science, 2014, 630, 229-235.	0.8	32
80	Vibrational Study of SO _{<i>x</i>} Adsorption on Pt/SiO ₂ . Journal of Physical Chemistry C, 2014, 118, 29713-29723.	1.5	10
81	Chemical deactivation of Fe-BEA as NH3-SCR catalyst—Effect of phosphorous. Applied Catalysis B: Environmental, 2014, 147, 111-123.	10.8	54
82	A transient <i>in situ</i> infrared spectroscopy study on methane oxidation over supported Pt catalysts. Catalysis Science and Technology, 2014, 4, 3463-3473.	2.1	28
83	Synthesis and functionalization of SSZ-13 as an NH ₃ -SCR catalyst. Catalysis Science and Technology, 2014, 4, 3917-3926.	2.1	55
84	Catalytic hydrogenation of Cî€C and Cî€O in unsaturated fatty acid methyl esters. Catalysis Science and Technology, 2014, 4, 2427-2444.	2.1	52
85	Effect of post-synthesis hydrogen-treatment on the nature of iron species in Fe-BEA as NH ₃ -SCR catalyst. Catalysis Science and Technology, 2014, 4, 2932-2937.	2.1	27
86	Improved low-temperature activity of silver–alumina for lean NOx reduction – Effects of Ag loading and low-level Pt doping. Applied Catalysis B: Environmental, 2014, 152-153, 218-225.	10.8	22
87	The influence of hydrogen on the stability of nitrates during H2-assisted SCR over Ag/Al2O3 catalysts – A DRIFT study. Journal of Catalysis, 2013, 307, 153-161.	3.1	35
88	Effect of Preparation Procedure on the Catalytic Properties of Fe-ZSM-5 as SCR Catalyst. Topics in Catalysis, 2013, 56, 567-575.	1.3	23
89	Dispersion Aspects of NH3-Delivery Strategies for NH3-Based SCR Systems. Topics in Catalysis, 2013, 56, 75-79.	1.3	2
90	Influence of Hydrothermal Ageing on NH3-SCR Over Fe-BEA—Inhibition of NH3-SCR by Ammonia. Topics in Catalysis, 2013, 56, 80-88.	1.3	16

#	Article	IF	CITATIONS
91	Effect of Silver Loading on the Lean NOx Reduction with Methanol Over Ag–Al2O3. Topics in Catalysis, 2013, 56, 145-150.	1.3	10
92	Influence of Ageing, Silver Loading and Type of Reducing Agent on the Lean NO x Reduction Over Ag–Al2O3 Catalysts. Topics in Catalysis, 2013, 56, 416-420.	1.3	6
93	Characterization of Particulate Matter from Direct Injected Gasoline Engines. Topics in Catalysis, 2013, 56, 446-451.	1.3	27
94	A kinetic model of the hydrogen assisted selective catalytic reduction of NO with ammonia over Ag/Al ₂ O ₃ . AICHE Journal, 2013, 59, 4325-4333.	1.8	8
95	The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3. Applied Catalysis B: Environmental, 2013, 136-137, 168-176.	10.8	26
96	Mechanisms behind sulfur promoted oxidation of methane. Physical Chemistry Chemical Physics, 2013, 15, 8648.	1.3	33
97	Effect of Thermal Ageing on the Nature of Iron Species in Fe-BEA. Catalysis Letters, 2013, 143, 43-48.	1.4	21
98	Improved low-temperature SCR activity for Fe-BEA catalysts by H2-pretreatment. Applied Catalysis B: Environmental, 2013, 138-139, 373-380.	10.8	59
99	Methane Oxidation Over Pd Supported on Ceria–Alumina Under Rich/Lean Cycling Conditions. Topics in Catalysis, 2013, 56, 410-415.	1.3	26
100	On the performance of Ag/Al ₂ O ₃ as a HC-SCR catalyst – influence of silver loading, morphology and nature of the reductant. Catalysis Science and Technology, 2013, 3, 644-653.	2.1	38
101	Kinetic modeling of H-BEA and Fe-BEA as NH3-SCR catalysts—Effect of hydrothermal treatment. Catalysis Today, 2012, 197, 24-37.	2.2	56
102	Hydrothermal Stability of Fe–BEA as an NH ₃ -SCR Catalyst. Industrial & Engineering Chemistry Research, 2012, 51, 12762-12772.	1.8	79
103	Controlling Selectivity in Direct Conversion of Methane into Formaldehyde/Methanol over Iron Molybdate via Periodic Operation Conditions. Energy & Fuels, 2012, 26, 1984-1987.	2.5	13
104	Real Time Indirect Nanoplasmonic in Situ Spectroscopy of Catalyst Nanoparticle Sintering. ACS Catalysis, 2012, 2, 238-245.	5.5	40
105	Effect of Particle Morphology on the Ripening of Supported Pt Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 5646-5653.	1.5	61
106	Influence of the Carbon–Carbon Bond Order and Silver Loading on the Formation of Surface Species and Gas Phase Oxidation Products in Absence and Presence of NOx over Silver-Alumina Catalysts. ACS Catalysis, 2012, 2, 1615-1623.	5.5	13
107	Selective catalytic reduction of NOx with methanol over supported silver catalysts. Applied Catalysis B: Environmental, 2012, 119-120, 256-266.	10.8	27
108	Experimental Method for Kinetic Studies of Gas–Solid Reactions: Oxidation of Carbonaceous Matter. Journal of Physical Chemistry C, 2011, 115, 16098-16108.	1.5	28

#	Article	IF	CITATIONS
109	Study of the Sensing Mechanism Towards Carbon Monoxide of Platinum-Based Field Effect Sensors. IEEE Sensors Journal, 2011, 11, 1527-1534.	2.4	22
110	In Situ Spectroscopic Investigation of Low-Temperature Oxidation of Methane over Alumina-Supported Platinum during Periodic Operation. Journal of Physical Chemistry C, 2011, 115, 944-951.	1.5	41
111	Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. Journal of Catalysis, 2011, 281, 147-155.	3.1	181
112	Sulfur promoted low-temperature oxidation of methane over ceria supported platinum catalysts. Journal of Catalysis, 2011, 284, 50-59.	3.1	37
113	Did Chemisorption Become an Obsolete Method With Advent of Tem? Comparison of Mean Particle Size and Distribution of Silver on Alumina. Catalysis Letters, 2011, 141, 665-669.	1.4	7
114	Low-temperature oxidation of carbon monoxide and methane over alumina and ceria supported platinum catalysts. Applied Catalysis B: Environmental, 2011, 101, 669-675.	10.8	77
115	High-resolution core-level spectroscopy study of the ultrathin aluminum oxide film on NiAl(110). Physical Review B, 2011, 83, .	1.1	19
116	Mechanistic aspects of the selective catalytic reduction of NOx by dimethyl ether and methanol over γ-Al2O3. Journal of Catalysis, 2010, 276, 402-411.	3.1	40
117	Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM. Journal of the American Chemical Society, 2010, 132, 7968-7975.	6.6	374
118	Effect of water vapour on gallium doped zinc oxide nanoparticle sensor gas response. , 2009, , .		1
119	Influence of Synthesis Conditions for ZSM-5 on the Hydrothermal Stability of Cu-ZSM-5. Catalysis Letters, 2009, 130, 79-85.	1.4	22
120	Differences Between Al2O3 and Ag/Al2O3 for Lean Reduction of NO x with Dimethyl Ether. Topics in Catalysis, 2009, 52, 1813-1816.	1.3	11
121	Aspects of the Role of Hydrogen in H2-Assisted HC–SCR Over Ag–Al2O3. Topics in Catalysis, 2009, 52, 1817-1820.	1.3	28
122	Mechanistic Considerations of the NO x Source and the Reducing Agent for Lean NO x Reduction over H-ZSM-5. Topics in Catalysis, 2009, 52, 1921-1924.	1.3	3
123	Methane Oxidation over Alumina and Ceria Supported Platinum. Topics in Catalysis, 2009, 52, 1957-1961.	1.3	25
124	Virtual Control for High Conversion of Methane Over Supported Pt. Topics in Catalysis, 2009, 52, 1962-1966.	1.3	13
125	Ag–Al2O3 catalysts for lean NOx reduction—Influence of preparation method and reductant. Journal of Molecular Catalysis A, 2009, 302, 86-96.	4.8	78
126	The influence of gas phase reactions on the design criteria for catalysts for lean NOx reduction with dimethyl ether. Applied Catalysis B: Environmental, 2009, 91, 234-241.	10.8	15

#	Article	IF	CITATIONS
127	SOx storage and release kinetics for ceria-supported platinum. Applied Catalysis B: Environmental, 2009, 91, 679-682.	10.8	13
128	FET Gas-Sensing Mechanism, Experimental and Theoretical Studies. , 2009, , 1-27.		3
129	Regenerable ceria-based SOx traps for sulfur removal in lean exhausts. Applied Catalysis B: Environmental, 2008, 84, 268-276.	10.8	49
130	Catalytic oxidation of CO over ordered mesoporous platinum. Journal of Catalysis, 2008, 253, 253-260.	3.1	17
131	Aspects of reducing agent and role of amine species in the reduction of NO over H-ZSM-5 in oxygen excess. Journal of Catalysis, 2008, 258, 386-392.	3.1	22
132	In situ DRIFT study of the CO response mechanism of MISFET sensors using a Pt/SiO <inf>2</inf> model sensor. , 2008, , .		1
133	Vibrational analysis of H <inf>2</inf> and NH <inf>3</inf> adsorption on Pt/SiO <inf>2</inf> and Ir/SiO <inf>2</inf> model sensors. , 2007, , .		1
134	In situ DRIFT study of hydrogen and CO adsorption on Pt/SiO <inf>2</inf> model sensors. , 2007, , .		3
135	Sintering of alumina-supported nickel particles under amination conditions: Support effects. Applied Catalysis A: General, 2007, 317, 62-69.	2.2	26
136	Methane oxidation over alumina supported platinum investigated by time-resolved in situ XANES spectroscopy. Journal of Catalysis, 2007, 252, 11-17.	3.1	65
137	Kinetic modelling of sulfur deactivation of Pt/BaO/Al2O3 and BaO/Al2O3 NOx storage catalysts. Applied Catalysis B: Environmental, 2007, 70, 179-188.	10.8	26
138	Deactivation of diesel oxidation catalysts: Vehicle- and synthetic aging correlations. Applied Catalysis B: Environmental, 2007, 72, 71-81.	10.8	90
139	Differences in catalytic properties between mesoporous and nanoparticulate platinum. European Physical Journal D, 2007, 43, 209-211.	0.6	16
140	Mechanistic aspects of lean NO2 reduction by propane over HZSM-5. Topics in Catalysis, 2007, 42-43, 105-107.	1.3	0
141	Effects of oxidation and redox-properties on the selectivity of heat-treated Ag/Al2O3 catalysts for HC-SCR of NOx. Topics in Catalysis, 2007, 42-43, 119-122.	1.3	7
142	Improved lean deNOx performance of Cu-ZSM-5 through alternative synthesis conditions for ZSM-5. Topics in Catalysis, 2007, 42-43, 153-156.	1.3	4
143	Sulfur deactivation and regeneration of Pt/BaO/Al2O3 and Pt/SrO/Al2O3 NO x storage catalysts. Topics in Catalysis, 2007, 42-43, 183-187.	1.3	14
144	Low-temperature activity for CO oxidation over diesel oxidation catalysts studied by High Throughput Screening and DRIFT spectroscopy. Topics in Catalysis, 2007, 42-43, 421-424.	1.3	10

#	Article	IF	CITATIONS
145	Pilot-scale investigation of Pt/alumina catalysts deactivation by organosilicon in the total oxidation of hydrocarbons. Topics in Catalysis, 2007, 45, 121-124.	1.3	10
146	Methane oxidation over Pt/Al2O3 and Pd/Al2O3 catalysts under transient conditions. Catalysis Letters, 2007, 115, 1-7.	1.4	60
147	Self-sustained kinetic oscillations in CO oxidation over silica-supported Pt. Physical Chemistry Chemical Physics, 2006, 8, 2703.	1.3	44
148	Mechanistic Aspects of HC-SCR over HZSM-5:Â Hydrocarbon Activation and Role of Carbonâ^'Nitrogen Intermediates. Journal of Physical Chemistry B, 2006, 110, 18392-18400.	1.2	16
149	Mechanistic Study of Lean NO2 Reduction by Propane Over HZSM-5 in the Presence of Water. Catalysis Letters, 2006, 106, 15-19.	1.4	14
150	Catalytic and mechanistic study of lean NO2 reduction by isobutane and propane over HZSM-5. Journal of Molecular Catalysis A, 2006, 249, 13-22.	4.8	10
151	In situ FTIR study of SO2 interaction with Pt/BaCO3/Al2O3 NOx storage catalysts under lean and rich conditions. Journal of Catalysis, 2006, 241, 200-210.	3.1	93
152	A combined transient in situ FTIR and flow reactor study of NOX storage and reduction over M/BaCO3/Al2O3 (M=PtM=Pt, Pd or Rh) catalysts. Journal of Catalysis, 2006, 244, 169-182.	3.1	68
153	The reduction phase in NOx storage catalysis: Effect of type of precious metal and reducing agent. Applied Catalysis B: Environmental, 2006, 62, 319-328.	10.8	67
154	Role of Pt-precursor on the performance of Pt/BaCO3/Al2O3·NOx storage catalysts. Journal of Molecular Catalysis A, 2005, 225, 259-269.	4.8	43
155	Mechanistic study of the influence of surface acidity on lean NO2 reduction by propane in HZSM-5. Journal of Catalysis, 2005, 232, 68-79.	3.1	30
156	The effect of platinum distribution in monolithic catalysts on the oxidation of CO and hydrocarbons. Journal of Catalysis, 2005, 233, 176-185.	3.1	38
157	Sulfur deactivation of Pt/SiO2, Pt/BaO/Al2O3, and BaO/Al2O3 NOx storage catalysts: Influence of SO2 exposure conditions. Journal of Catalysis, 2005, 234, 206-218.	3.1	44
158	Platinum dispersion measurements for Pt/BaO/Al2O3, NOx storage catalysts. Applied Catalysis A: General, 2005, 296, 157-168.	2.2	38
159	Vibrational Analysis of H2and D2Adsorption on Pt/SiO2. Journal of Physical Chemistry B, 2005, 109, 9581-9588.	1.2	38
160	Investigation of Pt/\hat{I}^3 -Al2O3 catalysts with locally high Pt concentrations for oxidation of CO at low temperatures. Journal of Catalysis, 2004, 221, 252-261.	3.1	64
161	A transient in situ FTIR and XANES study of CO oxidation over Pt/AlO catalysts. Journal of Catalysis, 2004, 226, 422-434.	3.1	122
162	Continuous lean NOx reduction with hydrocarbons over dual pore system catalysts. Applied Catalysis B: Environmental, 2004, 48, 95-100.	10.8	18

#	Article	IF	CITATIONS
163	Influence of ammonia on CO and methanol oxidation over Pt/γ-Al2O3 catalysts modified by Mg. Applied Catalysis B: Environmental, 2004, 49, 51-59.	10.8	13
164	Characterization of Pt/Ĵ3-Al2O3 catalysts deactivated by hexamethyldisiloxane. Applied Catalysis B: Environmental, 2004, 54, 1-7.	10.8	24
165	Strategies for Enhancing Low-Temperature Activity. Topics in Catalysis, 2004, 28, 79-87.	1.3	48
166	Selective Catalytic Reduction of NOxover H-ZSM-5 Under Lean Conditions Using Transient NH3Supply. Topics in Catalysis, 2004, 30/31, 107-113.	1.3	24
167	Platinum Oxidation and Sulphur Deactivation in NOxStorage Catalysts. Topics in Catalysis, 2004, 30/31, 143-146.	1.3	26
168	Influence of the Type of Reducing Agent (H2, CO, C3H6and C3H8) on the Reduction of Stored NOXin a Pt/BaO/Al2O3Model Catalyst. Topics in Catalysis, 2004, 30/31, 161-168.	1.3	96
169	Influence of the Storage Material on the Storage of NOxat Low Temperatures. Topics in Catalysis, 2004, 30/31, 199-206.	1.3	30
170	Low-Temperature CO Oxidation over a Pt/Al2O3Monolith Catalyst Investigated by Step-Response Experiments and Simulations. Topics in Catalysis, 2004, 30/31, 375-381.	1.3	28
171	The effect of metal oxide additives (WO3, MoO3, V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 catalysts. Journal of Molecular Catalysis A, 2004, 209, 215-225.	4.8	59
172	The influence of surface acidity on NO2 reduction by propane under lean conditions. Journal of Molecular Catalysis A, 2004, 209, 199-207.	4.8	21
173	altimg= si52.gif_display= inline_overnow= scroll xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.9	34
174	Stabilising alumina supported nickel particles against sintering in ammonia/hydrogen atmosphere. Applied Catalysis A: General, 2004, 274, 61-69.	2.2	24
175	Vibrational study of ammonia adsorption on Pt/SiO2. Applied Surface Science, 2004, 235, 487-500.	3.1	60
176	Preparation of Mn, Fe and Co based perovskite catalysts using microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 238, 27-35.	2.3	20
177	Screening of TiO2-Supported Catalysts for Selective NOx Reduction with Ammonia. Industrial & Engineering Chemistry Research, 2004, 43, 7723-7731.	1.8	83
178	Influence of the support acidity of Pt/aluminum-silicate catalysts on the continuous reduction of NO under lean conditions. Applied Catalysis B: Environmental, 2003, 41, 287-300.	10.8	27
179	Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst. Applied Catalysis B: Environmental, 2003, 46, 429-439.	10.8	68
180	Sulfur deactivation of NOx storage catalysts: influence of exposure conditions and noble metal. Journal of Catalysis, 2003, 217, 253-263.	3.1	79

#	Article	IF	CITATIONS
181	Selective catalytic reduction of NOx with NH3 over zeolite H–ZSM-5: influence of transient ammonia supply. Journal of Catalysis, 2003, 218, 354-364.	3.1	103
182	Deposition of Platinum Nanoparticles, Synthesized in Water-in-Oil Microemulsions, on Alumina Supports. Langmuir, 2002, 18, 1811-1818.	1.6	59
183	A comparison between Pt and Pd in NOx storage catalysts. Applied Catalysis B: Environmental, 2002, 36, 145-160.	10.8	111
184	Mean field modelling of NOx storage on Pt/BaO/Al2O3. Catalysis Today, 2002, 73, 263-270.	2.2	110
185	Investigations of sulphur deactivation of NOx storage catalysts: influence of sulphur carrier and exposure conditions. Catalysis Today, 2002, 73, 279-286.	2.2	50
186	Sintering of nickel particles supported on Î ³ -alumina in ammonia. Applied Catalysis A: General, 2002, 228, 145-154.	2.2	29
187	Induced low temperature catalytic ignition by transient changes in the gas composition. Catalysis Today, 2002, 73, 307-313.	2.2	22
188	On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation. Journal of Catalysis, 2002, 211, 387-397.	3.1	238
189	A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Physical Chemistry B, 2001, 105, 6895-6906.	1.2	318
190	Kinetics of the Formation of Nano-Sized Platinum Particles in Water-in-Oil Microemulsions. Journal of Colloid and Interface Science, 2001, 241, 104-111.	5.0	95
191	An Investigation of the Reaction Mechanism for the Promotion of Propane Oxidation over Pt/Al2O3 by SO2. Journal of Catalysis, 2001, 201, 247-257.	3.1	86
192	Periodic Control for Improved Low-Temperature Catalytic Activity. Topics in Catalysis, 2001, 16/17, 343-347.	1.3	15
193	A Mechanistic Study of Low Temperature CO Oxidation over Cobalt Oxide. Topics in Catalysis, 2001, 16/17, 385-389.	1.3	88
194	Model Studies of NOx Storage and Sulphur Deactivation of NOx Storage Catalysts. Topics in Catalysis, 2001, 16/17, 133-137.	1.3	80
195	SO2 promoted oxidation of ethyl acetate, ethanol and propane. Applied Catalysis B: Environmental, 2001, 30, 315-328.	10.8	53
196	The influence of CO2, C3H6, NO, H2, H2O or SO2 on the low-temperature oxidation of CO on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4). Applied Catalysis B: Environmental, 2001, 31, 1-12.	10.8	50
197	Effects of the radial distribution of platinum in spherical alumina catalysts on the oxidation of CO in air. Chemical Engineering Science, 2000, 55, 4939-4951.	1.9	14
198	The mechanism for NOx storage. Catalysis Letters, 2000, 66, 71-74.	1.4	205

#	Article	IF	CITATIONS
199	Improved light-off performance by using transient gas compositions in the catalytic treatment of car exhausts. Chemical Engineering Science, 1999, 54, 4559-4566.	1.9	19
200	NOxStorage in Barium-Containing Catalysts. Journal of Catalysis, 1999, 183, 196-209.	3.1	335
201	Low-Temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts. Journal of Catalysis, 1999, 188, 300-310.	3.1	207
202	Comparison between ammonia and propene as the reducing agent in the selective catalytic reduction of NO under lean conditions over Pt black. Applied Catalysis B: Environmental, 1999, 20, 133-144.	10.8	20
203	Zeolite supported Pt catalysts for reduction of NO under oxygen excess: a comparison of C3H6, HNCO and NH3 as reducing agents. Applied Catalysis B: Environmental, 1999, 20, 235-242.	10.8	14
204	Differences in reaction mechanisms for the selective reduction of NO under oxygen excess over Pt based catalysts using propane or propene as the reducing agent. Applied Catalysis B: Environmental, 1999, 22, L1-L3.	10.8	12
205	Sulphur dioxide interaction with NOx storage catalysts. Applied Catalysis B: Environmental, 1999, 22, L241-L248.	10.8	119
206	Poisoning and regeneration of NOx adsorbing catalysts for automotive applications. Studies in Surface Science and Catalysis, 1999, , 211-218.	1.5	18
207	A Kinetic Study of Oxygen Adsorption/Desorption and NO Oxidation over Pt/Al2O3 Catalysts. Journal of Physical Chemistry B, 1999, 103, 10433-10439.	1.2	179
208	Role of Adsorbed Surface Oxygen in the Adsorption of NO on Alkaline Earth Oxides and Pt-Promoted CaO Surfaces. Journal of Physical Chemistry B, 1999, 103, 972-978.	1.2	7
209	Sulphur dioxide deactivation of NOx storage catalysts. Studies in Surface Science and Catalysis, 1999, 126, 317-324.	1.5	28
210	Selective Reduction of NO by HNCO over Pt Promoted Al2O3. Journal of Catalysis, 1998, 179, 528-536.	3.1	38
211	Light-off performance over cobalt oxide- and ceria-promoted platinum and palladium catalysts. Studies in Surface Science and Catalysis, 1998, , 113-122.	1.5	1
212	Investigations of NOx storage catalysts. Studies in Surface Science and Catalysis, 1998, 116, 537-547.	1.5	59
213	Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd: -influence of pretreatment and gas composition. Applied Catalysis B: Environmental, 1997, 14, 131-145.	10.8	121
214	Cobalt-promoted palladium as a three-way catalyst. Applied Catalysis B: Environmental, 1996, 7, 299-319.	10.8	110
215	Catalytic behaviour and characterisation of CuO1?z(La2O3)z/2 based catalysts deposited on ?-Al2O3 and prepared in situ with 0.0 ?z?1.00, without and with addition of Pd. Catalysis Letters, 1996, 37, 69-77.	1.4	2
216	Catalytic purification of car exhaust over cobalt-and copper-based metal oxides promoted with platinum and rhodium. Applied Catalysis B: Environmental, 1995, 6, 237-254.	10.8	40

#	Article	IF	CITATIONS
217	Characterization and catalytic properties of perovskites with nominal compositions La1-xSrxAl1-2yCuyRuyO3. Applied Catalysis B: Environmental, 1994, 3, 259-274.	10.8	36
218	Characterization of a Pt-Pd combustion catalyst on an alumina washcoat, with and without prior hydrothermal treatment of the washcoat. Catalysis Letters, 1992, 13, 27-37.	1.4	11
219	Combinations of platinum and palladium on alumina supports as oxidation catalysts. Applied Catalysis, 1991, 77, 9-20.	1.1	55
220	Sulphur Poisoning and Regeneration of NOx Trap Catalyst for Direct Injected Gasoline Engines. , 0, , .		26
221	Model Studies of Sulphur Deactivation of Nox Storage Catalysts. , 0, , .		5
222	Reduction of Soot Emissions from a Direct Injection Diesel Engine using Water-in-Diesel Emulsion and Microemulsion Fuels. , 0, , .		21
223	Characterization of Particulate Emissions and Methodology for Oxidation of Particulates from Non-Diesel Combustion Systems. , 0, , .		18
224	Comparison of Lab Versus Engine Tests In the Development of a Highly Efficient Ammonia Formation Catalyst for a Passive SCR System. , 0, , .		3
225	Impact of Thermal and Chemical Ageing of Fe-BEA SCR Catalyst on NOx Conversion Performance. SAE International Journal of Engines, 0, 9, 1305-1313.	0.4	1