Susanne M Clee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1411598/susanne-m-clee-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,984 46 29 51 h-index g-index papers citations 5,388 4.64 51 9.4 ext. citations avg, IF L-index ext. papers

#	Paper	IF	Citations
46	Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. <i>EBioMedicine</i> , 2019 , 44, 489-501	8.8	14
45	Metabolic effects of leptin receptor knockdown or reconstitution in adipose tissues. <i>Scientific Reports</i> , 2019 , 9, 3307	4.9	10
44	Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. <i>Physiological Genomics</i> , 2018 , 50, 35-51	3.6	7
43	Biological Imaging with Medium-Sensitive Bichromatic Flexible Fluorescent Dyes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15603-15606	16.4	21
42	Biological Imaging with Medium-Sensitive Bichromatic Flexible Fluorescent Dyes. <i>Angewandte Chemie</i> , 2017 , 129, 15809-15812	3.6	5
41	Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity. <i>Endocrinology</i> , 2016 , 157, 2671-85	4.8	8
40	Caloric Restriction Paradoxically Increases Adiposity in Mice With Genetically Reduced Insulin. <i>Endocrinology</i> , 2016 , 157, 2724-34	4.8	35
39	Suppressing hyperinsulinemia prevents obesity but causes rapid onset of diabetes in leptin-deficient mice. <i>Molecular Metabolism</i> , 2016 , 5, 1103-1112	8.8	25
38	Leptin induces fasting hypoglycaemia in a mouse model of diabetes through the depletion of glycerol. <i>Diabetologia</i> , 2015 , 58, 1100-8	10.3	19
37	PWD/PhJ mice have a genetically determined increase in nutrient-stimulated insulin secretion. <i>Mammalian Genome</i> , 2015 , 26, 131-41	3.2	2
36	Suppression of hyperinsulinaemia in growing female mice provides long-term protection against obesity. <i>Diabetologia</i> , 2015 , 58, 2392-402	10.3	54
35	14-3-3[coordinates adipogenesis of visceral fat. <i>Nature Communications</i> , 2015 , 6, 7671	17.4	36
34	Obesity genetics in mouse and human: back and forth, and back again. <i>PeerJ</i> , 2015 , 3, e856	3.1	83
33	Altered pancreatic growth and insulin secretion in WSB/EiJ mice. PLoS ONE, 2014, 9, e88352	3.7	6
32	Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets. <i>BMC Genetics</i> , 2013 , 14, 10	2.6	16
31	Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. <i>Nature Neuroscience</i> , 2013 , 16, 300-8	25.5	168
30	Moo1 obesity quantitative trait locus in BTBR T+ Itpr3tf/J mice increases food intake. <i>Physiological Genomics</i> , 2013 , 45, 191-9	3.6	2

(2001-2013)

29	Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia. <i>Nutrition and Diabetes</i> , 2013 , 3, e97	4.7	39
28	Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. <i>Cell Metabolism</i> , 2012 , 16, 723-37	24.6	325
27	Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner. <i>Nutrition and Metabolism</i> , 2012 , 9, 65	4.6	34
26	GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. <i>PLoS ONE</i> , 2012 , 7, e40156	3.7	91
25	PWD/PhJ and WSB/EiJ mice are resistant to diet-induced obesity but have abnormal insulin secretion. <i>Endocrinology</i> , 2011 , 152, 3005-17	4.8	20
24	Positional cloning of a type 2 diabetes quantitative trait locus; tomosyn-2, a negative regulator of insulin secretion. <i>PLoS Genetics</i> , 2011 , 7, e1002323	6	53
23	A role for MMP-3 genetic variation in atherosclerosis susceptibility?. Atherosclerosis, 2010 , 208, 30-1	3.1	6
22	The genetic landscape of type 2 diabetes in mice. <i>Endocrine Reviews</i> , 2007 , 28, 48-83	27.2	158
21	SORCS1: a novel human type 2 diabetes susceptibility gene suggested by the mouse. <i>Diabetes</i> , 2007 , 56, 1922-9	0.9	71
20	Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. <i>Nature Genetics</i> , 2006 , 38, 688-9:	3 36.3	132
19	Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. <i>American Journal of Therapeutics</i> , 2005 , 12, 491-8	1	77
18	Identification of major quantitative trait loci controlling body weight variation in ob/ob mice. <i>Diabetes</i> , 2004 , 53, 245-9	0.9	39
17	ABCA1 regulatory variants influence coronary artery disease independent of effects on plasma lipid levels. <i>Clinical Genetics</i> , 2002 , 61, 115-25	4	85
16	Truncation mutations in ABCA1 suppress normal upregulation of full-length ABCA1 by 9-cis-retinoic acid and 22-R-hydroxycholesterol. <i>Journal of Lipid Research</i> , 2002 , 43, 1939-49	6.3	25
15	Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux: an observational study. <i>Lancet, The</i> , 2002 , 359, 37-42	40	171
14	Increased ABCA1 activity protects against atherosclerosis. <i>Journal of Clinical Investigation</i> , 2002 , 110, 35-42	15.9	203
13	Increased ABCA1 activity protects against atherosclerosis. Journal of Clinical Investigation, 2002,	150	95
	110, 35-42	15.9	

11	Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. <i>Circulation</i> , 2001 , 103, 1198-205	16.7	262
10	Maternal expression of functional lipoprotein lipase and effects on body fat mass and body condition scores of mature cats with lipoprotein lipase deficiency. <i>American Journal of Veterinary Research</i> , 2001 , 62, 264-9	1.1	9
9	Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency. <i>Current Opinion in Lipidology</i> , 2000 , 11, 117-22	4.4	99
8	Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. <i>Journal of Clinical Investigation</i> , 2000 , 106, 1263-70	15.9	266
7	Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. <i>Journal of Lipid Research</i> , 2000 , 41, 521-531	6.3	67
6	Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. <i>Journal of Lipid Research</i> , 2000 , 41, 521-31	6.3	59
5	Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. <i>Nature Genetics</i> , 1999 , 22, 336-45	36.3	1468
4	Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. <i>Lancet, The</i> , 1999 , 354, 1341-6	40	321
3	Ethnic variation and in vivo effects of the -93t>g promoter variant in the lipoprotein lipase gene. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 1997 , 17, 2672-8	9.4	38
2	Differences in the phenotype between children with familial defective apolipoprotein B-100 and familial hypercholesterolemia. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 1997 , 17, 826-33	9.4	23
1	Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function. <i>Lipids and Lipid Metabolism</i> , 1996 , 1302, 159-66		81