Patrizia Trovalusci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1411442/publications.pdf

Version: 2024-02-01

73 papers 1,902 citations

28
h-index

265120 42 g-index

76 all docs

76 docs citations

76 times ranked 610 citing authors

#	Article	IF	CITATIONS
1	Bending characteristics of carbon nanotubes: Micropolar elasticity models and molecular dynamics simulations. Mechanics of Advanced Materials and Structures, 2023, 30, 189-206.	1.5	9
2	Mechanical characterization of composite materials with rectangular microstructure and voids. Archive of Applied Mechanics, 2023, 93, 389-404.	1.2	7
3	Statistical Assessment of In-Plane Masonry Panels Using Limit Analysis with Sliding Mechanism. Journal of Engineering Mechanics - ASCE, 2022, 148, .	1.6	12
4	Rotation and sliding collapse mechanisms for in plane masonry pointed arches: statistical parametric assessment. Engineering Structures, 2022, 262, 114338.	2.6	8
5	Stress distribution around an elliptic hole in a plate with †implicit†and †explicit†non-local models. Composite Structures, 2021, 256, 113003.	3.1	18
6	†Explicit' and †Implicit' Non-local Continuum Descriptions: Plate with Circular Hole. Springer Tracts in Mechanical Engineering, 2021, , 311-338.	0.1	4
7	Torsional Characteristics of Carbon Nanotubes: Micropolar Elasticity Models and Molecular Dynamics Simulation. Nanomaterials, 2021, 11, 453.	1.9	25
8	Statistical homogenization of polycrystal composite materials with thin interfaces using virtual element method. Composite Structures, 2021, 264, 113741.	3.1	7
9	Limit analysis approach for the in-plane collapse of masonry arches. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2021, 174, 66-81.	0.4	4
10	Dynamic Characterization of Microstructured Materials Made of Hexagonal-Shape Particles with Elastic Interfaces. Nanomaterials, 2021, 11, 1781.	1.9	9
11	A multifield continuum model for the description of the response of microporous/microcracked composite materials. Mechanics of Materials, 2021, 160, 103965.	1.7	4
12	The effects of dilatancy in composite assemblies as micropolar continua. Composite Structures, 2021, 276, 114500.	3.1	3
13	Time-History Analysis of Composite Materials with Rectangular Microstructure under Shear Actions. Materials, 2021, 14, 6439.	1.3	4
14	Scale dependent continuum approaches for discontinuous assemblies:  Explicit' and  implicit' non-local models. Mechanics Research Communications, 2020, 103, 103461.	1.0	33
15	â€~Explicit' and â€~implicit' non-local continuous descriptions for a plate with circular inclusion in tension. Meccanica, 2020, 55, 927-944.	1.2	32
16	Computational Optimization for Structural Engineering Applications. Journal of Optimization Theory and Applications, 2020, 187, 609-612.	0.8	0
17	Optimal Sensors Placement in Dynamic Damage Detection of Beams Using a Statistical Approach. Journal of Optimization Theory and Applications, 2020, 187, 758-775.	0.8	3
18	Discrete and Continuous Approaches for the Failure Analysis of Masonry Structures Subjected to Settlements. Frontiers in Built Environment, 2020, 6, .	1.2	29

#	Article	IF	CITATIONS
19	PREFACE: MULTISCALE AND MULTIPHYSICS MODELING OF "COMPLEX" MATERIALS AND ENGINEERING APPLICATIONS. International Journal for Multiscale Computational Engineering, 2020, 18, v-ix.	0.8	0
20	Material Symmetries in Homogenized Hexagonal-Shaped Composites as Cosserat Continua. Symmetry, 2020, 12, 441.	1.1	24
21	Optimal Sensors Placement for Damage Detection of Beam Structures. Lecture Notes in Mechanical Engineering, 2020, , 1498-1511.	0.3	1
22	Micromodels for the In-Plane Failure Analysis of Masonry Walls with Friction: Limit Analysis and DEM-FEM/DEM Approaches. Lecture Notes in Mechanical Engineering, 2020, , 1883-1895.	0.3	5
23	MULTISCALE ANALYSIS OF ANISOTROPIC MATERIALS WITH HEXAGONAL MICROSTRUCTURE AS MICROPOLAR CONTINUA. International Journal for Multiscale Computational Engineering, 2020, 18, 265-284.	0.8	19
24	Micromodels for the in-plane failure analysis of masonry walls: Limit Analysis, FEM and FEM/DEM approaches. Frattura Ed Integrita Strutturale, 2020, 14, 504-516.	0.5	23
25	Multiscale Analysis of Materials with Anisotropic Microstructure as Micropolar Continua. Lecture Notes in Mechanical Engineering, 2020, , 796-806.	0.3	1
26	ECOSITING: A Sit Platform for Planning the Integrated Cycle of Urban Waste. Smart Innovation, Systems and Technologies, 2019, , 585-592.	0.5	0
27	Homogenization of Random Porous Materials With Low-Order Virtual Elements. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2019, 5, .	0.7	4
28	Dynamical properties of a composite microcracked bar based on a generalized continuum formulation. Continuum Mechanics and Thermodynamics, 2019, 31, 1627-1644.	1.4	16
29	Scale Effects in Orthotropic Composite Assemblies as Micropolar Continua: A Comparison between Weak- and Strong-Form Finite Element Solutions. Materials, 2019, 12, 758.	1.3	28
30	Deformation of atomic models and their equivalent continuum counterparts using Eringen's two-phase local/nonlocal model. Mechanics Research Communications, 2019, 97, 26-32.	1.0	46
31	Mechanical Behavior of Anisotropic Composite Materials as Micropolar Continua. Frontiers in Materials, 2019, 6, .	1.2	32
32	Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method. Computational Mechanics, 2019, 64, 197-210.	2.2	31
33	STATISTICAL HOMOGENIZATION OF RANDOM POROUS MEDIA. , 2019, , .		1
34	A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: Application to masonry structures. Composites Part B: Engineering, 2018, 141, 50-59.	5.9	73
35	Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Composites Part B: Engineering, 2018, 136, 39-45.	5.9	44
36	Some Novel Numerical Applications of Cosserat Continua. International Journal of Computational Methods, 2018, 15, 1850054.	0.8	33

3

#	Article	IF	Citations
37	A MULTISCALE/MULTIDOMAIN MODEL FOR THE FAILURE ANALYSIS OF MASONRY WALLS: A VALIDATION WITH A COMBINED FEM/DEM APPROACH. International Journal for Multiscale Computational Engineering, 2018, 16, 325-343.	0.8	49
38	Multiscale failure analysis of periodic masonry structures with traditional and fiber-reinforced mortar joints. Composites Part B: Engineering, 2017, 118, 75-95.	5.9	41
39	A multiscale description of particle composites: From lattice microstructures to micropolar continua. Composites Part B: Engineering, 2017, 128, 164-173.	5.9	39
40	A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. Advanced Structured Materials, 2016, , 425-441.	0.3	14
41	A multiphysics and multiscale approach for modeling microcracked thermo-elastic materials. Computational Materials Science, 2016, 116, 22-31.	1.4	11
42	Discrete to Scale-Dependent Continua for Complex Materials: A Generalized Voigt Approach Using the Virtual Power Equivalence. Springer Tracts in Mechanical Engineering, 2016, , 109-131.	0.1	4
43	MULTISCALE MODELING OF THERMO-ELASTIC PROPERTIES OF MICROCRACKED MATERIAL. , 2016, , .		0
44	Nineteenth century molecular models with a glance at modern discrete-continuum theories. Proceedings in Applied Mathematics and Mechanics, 2015, 15, 709-710.	0.2	0
45	Scale-dependent homogenization of random composites as micropolar continua. European Journal of Mechanics, A/Solids, 2015, 49, 396-407.	2.1	127
46	Particulate random composites homogenized as micropolar materials. Meccanica, 2014, 49, 2719-2727.	1,2	36
47	Molecular Approaches for Multifield Continua: origins and current developments. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2014, , 211-278.	0.3	25
48	Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mechanica, 2014, 225, 157-177.	1,1	79
49	Multi-scale and multi-physics modelling for complex materials. Meccanica, 2014, 49, 2549-2550.	1,2	5
50	Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mechanica, 2012, 223, 1455-1471.	1.1	57
51	Voigt and Poincaré's mechanistic–energetic approaches to linear elasticity and suggestions for multiscale modelling. Archive of Applied Mechanics, 2011, 81, 1573-1584.	1,2	46
52	MULTIFIELD CONTINUUM SIMULATIONS FOR DAMAGED MATERIALS: A BAR WITH VOIDS. International Journal for Multiscale Computational Engineering, 2011, 9, 599-608.	0.8	9
53	MULTISCALE MECHANICAL MODELLING OF COMPLEX MATERIALS AND ENGINEERING APPLICATIONS 2. International Journal for Multiscale Computational Engineering, 2011, 9, vii-ix.	0.8	8
54	From classical to Voigt's molecular models in elasticity. Archive for History of Exact Sciences, 2010, 64, 525-559.	0.2	43

#	Article	IF	CITATIONS
55	Microcracked Materials as Non-Simple Continua. Materials Science Forum, 2010, 638-642, 2749-2754.	0.3	1
56	Coupling Continuum and Discrete Models of Materials with Microstructure: A Multiscale Algorithm. Materials Science Forum, 2010, 638-642, 2755-2760.	0.3	3
57	A Generalized Continuum Formulation for Composite Microcracked Materials and Wave Propagation in a Bar. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	1.1	30
58	Genesis of the multiscale approach for materials with microstructure. Archive of Applied Mechanics, 2009, 79, 981-997.	1.2	45
59	A Multiscale Approach for Composite Materials as Multifield Continua. Materials Science Forum, 2007, 539-543, 2551-2556.	0.3	1
60	Multiscale Mechanical Modeling of Complex Materials and Engineering Applications: Foreword: Guest Editor Patrizia Trovalusci. International Journal for Multiscale Computational Engineering, 2007, , vii-ix.	0.8	1
61	A Numerical Investigation of Structure-Property Relations in Fiber Composite Materials. International Journal for Multiscale Computational Engineering, 2007, 5, 141-152.	0.8	12
62	Multiscale modeling of materials by a multifield approach: Microscopic stress and strain distribution in fiber–matrix compositesâ~†. Acta Materialia, 2006, 54, 3485-3492.	3.8	29
63	A multifield model for blocky materials based on multiscale description. International Journal of Solids and Structures, 2005, 42, 5778-5794.	1.3	47
64	Non-linear micropolar and classical continua for anisotropic discontinuous materials. International Journal of Solids and Structures, 2003, 40, 1281-1297.	1.3	105
65	A Multi-Scale Continuum for Damaged Fibre Composites. Materials Science Forum, 2003, 426-432, 2133-2138.	0.3	4
66	Collapse behaviour of three-dimensional brick-block systems using non-linear programming. Structural Engineering and Mechanics, 2000, 10, 181-195.	1.0	84
67	Constitutive Relations for Elastic Microcracked Bodies: From a Lattice Model to a Multifield Continuum Description. International Journal of Damage Mechanics, 1999, 8, 153-173.	2.4	31
68	Material symmetries of micropolar continua equivalent to lattices. International Journal of Solids and Structures, 1999, 36, 2091-2108.	1.3	63
69	Limit Analysis for No-Tension and Frictional Three-Dimensional Discrete Systems*. Mechanics Based Design of Structures and Machines, 1998, 26, 287-304.	0.6	89
70	Strain Rates of Micropolar Continua Equivalent to Discrete Systems. Meccanica, 1997, 32, 581-583.	1.2	4
71	Cosserat and Cauchy materials as continuum models of brick masonry. Meccanica, 1996, 31, 421-432.	1.2	91
72	Masonry as structured continuum. Meccanica, 1995, 30, 673-683.	1.2	65

#	Article	IF	CITATIONS
73	New insights on homogenization for hexagonal-shaped composites as Cosserat continua. Meccanica, $0, 1.$	1.2	11