Alister C Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1411172/publications.pdf

Version: 2024-02-01

71651 57719 6,765 134 44 76 citations h-index g-index papers 135 135 135 8329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional Analysis of Zebrafish socs4a: Impacts on the Notochord and Sensory Function. Brain Sciences, 2022, 12, 241.	1.1	O
2	Generation and Characterization of a Zebrafish IL- $2R\hat{l}^3c$ SCID Model. International Journal of Molecular Sciences, 2022, 23, 2385.	1.8	13
3	Granulocyte Colony-Stimulating Factor Mediated Regulation of Early Myeloid Cells in Zebrafish. Frontiers in Bioscience, 2022, 27, 110.	0.8	7
4	Cytokineâ€inducible SH2 domain containing protein contributes to regulation of adiposity, food intake, and glucose metabolism. FASEB Journal, 2022, 36, e22320.	0.2	9
5	In vivo impact of JAK3 A573V mutation revealed using zebrafish. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	5
6	The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-Like Review. International Journal of Molecular Sciences, 2021, 22, 3608.	1.8	6
7	The endocannabinoid system and retinoic acid signaling combine to influence bone growth. Molecular and Cellular Endocrinology, 2021, 529, 111267.	1.6	4
8	SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Frontiers in Medicine, 2021, 8, 727987.	1.2	58
9	STAT proteins: a kaleidoscope of canonical and non-canonical functions in immunity and cancer. Journal of Hematology and Oncology, 2021, 14, 198.	6.9	45
10	Folate levels in pregnancy and offspring food allergy and eczema. Pediatric Allergy and Immunology, 2020, 31, 38-46.	1.1	12
11	ADAMTS-15 Has a Tumor Suppressor Role in Prostate Cancer. Biomolecules, 2020, 10, 682.	1.8	22
12	Acute Plasmodium berghei Mouse Infection Elicits Perturbed Erythropoiesis With Features That Overlap With Anemia of Chronic Disease. Frontiers in Microbiology, 2020, 11, 702.	1.5	10
13	Zebrafish Bacterial Infection Assay to Study Host-Pathogen Interactions. Bio-protocol, 2020, 10, e3536.	0.2	3
14	Zebrafish Granulocyte Colony-Stimulating Factor Receptor Maintains Neutrophil Number and Function throughout the Life Span. Infection and Immunity, 2019, 87, .	1.0	17
15	Hyperactivation of Oncogenic JAK3 Mutants Depend on ATP Binding to the Pseudokinase Domain. Frontiers in Oncology, 2018, 8, 560.	1.3	13
16	Recent Advances in Graphene Quantum Dots: Synthesis, Properties, and Applications. Small Methods, 2018, 2, 1800050.	4.6	166
17	Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials, 2018, 8, 561.	1.9	126
18	The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation. International Journal of Molecular Sciences, 2018, 19, 766.	1.8	2

#	Article	IF	CITATIONS
19	GCSF Receptor., 2018,, 2045-2051.		O
20	shRNAs targeting either the glycoprotein or polymerase genes inhibit Viral haemorrhagic septicaemia virus replication in zebrafish ZF4 cells. Antiviral Research, 2017, 141, 124-132.	1.9	8
21	ETV6 and ETV7: Siblings in hematopoiesis and its disruption in disease. Critical Reviews in Oncology/Hematology, 2017, 116, 106-115.	2.0	21
22	The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Letters, 2017, 385, 55-64.	3.2	60
23	Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration. Mediators of Inflammation, 2017, 2017, 1-9.	1.4	23
24	Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes. Oncotarget, 2017, 8, 93530-93540.	0.8	25
25	The ADAMTS hyalectanase family: biological insights from diverse species. Biochemical Journal, 2016, 473, 2011-2022.	1.7	29
26	Evolution of Cytokine Receptor Signaling. Journal of Immunology, 2016, 197, 11-18.	0.4	101
27	Genome editing in zebrafish: a practical overview. Briefings in Functional Genomics, 2016, 15, 322-330.	1.3	31
28	Signaling via the CytoR/JAK/STAT/SOCS pathway: Emergence during evolution. Molecular Immunology, 2016, 71, 166-175.	1.0	27
29	Conserved IL-2Rγc Signaling Mediates Lymphopoiesis in Zebrafish. Journal of Immunology, 2016, 196, 135-143.	0.4	23
30	GCSF Receptor., 2016,, 1-7.		0
31	STATs in Health and Disease. Cancer Drug Discovery and Development, 2016, , 1-32.	0.2	0
32	Functional analysis of truncated forms of ETV6. British Journal of Haematology, 2015, 171, 658-662.	1.2	8
33	ETV6 (TEL1) regulates embryonic hematopoiesis in zebrafish. Haematologica, 2015, 100, 23-31.	1.7	15
34	EpCAM Aptamer-mediated Survivin Silencing Sensitized Cancer Stem Cells to Doxorubicin in a Breast Cancer Model. Theranostics, 2015, 5, 1456-1472.	4.6	84
35	G-CSF treatment can attenuate dexamethasone-induced reduction in C2C12 myotube protein synthesis. Cytokine, 2015, 73, 1-7.	1.4	3
36	The evolutionary conservation of the A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motif metzincins across vertebrate species and their expression in teleost zebrafish. BMC Evolutionary Biology, 2015, 15, 22.	3.2	28

#	Article	IF	CITATIONS
37	Zebrafish as a model for leukemia and other hematopoietic disorders. Journal of Hematology and Oncology, 2015, 8, 29.	6.9	51
38	Lipid Abundance in Zebrafish Embryos Is Regulated by Complementary Actions of the Endocannabinoid System and Retinoic Acid Pathway. Endocrinology, 2015, 156, 3596-3609.	1.4	36
39	Cytokine Networks and Cancer Stem Cells. , 2015, , 67-87.		1
40	G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle. Frontiers in Physiology, 2014, 5, 170.	1.3	15
41	Role of the interleukin 6 receptor family in epithelial ovarian cancer and its clinical implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 117-125.	3.3	23
42	Regulation of Embryonic Hematopoiesis by a Cytokine-Inducible SH2 Domain Homolog in Zebrafish. Journal of Immunology, 2014, 192, 5739-5748.	0.4	11
43	Pegasus, the â€~atypical' Ikaros family member, influences left–right asymmetry and regulates pitx2 expression. Developmental Biology, 2013, 377, 46-54.	0.9	9
44	Biosynthesis and Expression of a Disintegrin-like and Metalloproteinase Domain with Thrombospondin-1 Repeats-15. Journal of Biological Chemistry, 2013, 288, 37267-37276.	1.6	48
45	Metabolic Profile Analysis of Zebrafish Embryos. Journal of Visualized Experiments, 2013, , e4300.	0.2	18
46	Characterization of Zebrafish Polymerase III Promoters for the Expression of Short-Hairpin RNA Interference Molecules. Zebrafish, 2013, 10, 472-479.	0.5	12
47	Chicken interferons, their receptors and interferon-stimulated genes. Developmental and Comparative Immunology, 2013, 41, 370-376.	1.0	69
48	Versican Processing by a Disintegrin-like and Metalloproteinase Domain with Thrombospondin-1 Repeats Proteinases-5 and -15 Facilitates Myoblast Fusion. Journal of Biological Chemistry, 2013, 288, 1907-1917.	1.6	65
49	Evolution of the JAK-STAT pathway. Jak-stat, 2013, 2, e22756.	2.2	59
50	The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life. International Journal of Environmental Research and Public Health, 2013, 10, 7235-7256.	1.2	50
51	SOCS proteins in development and disease. American Journal of Clinical and Experimental Immunology, 2013, 2, 1-29.	0.2	121
52	Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica, 2012, 97, 1895-1903.	1.7	36
53	Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development. PLoS ONE, 2012, 7, e32777.	1.1	111
54	Systematic investigation of oxygen and growth factors in clinically valid ex vivo expansion of cord blood CD34+ hematopoietic progenitor cells. Cytotherapy, 2012, 14, 679-685.	0.3	16

#	Article	IF	Citations
55	Koi Herpesvirus Encodes and Expresses a Functional Interleukin-10. Journal of Virology, 2012, 86, 11512-11520.	1.5	30
56	Groundwater pre-treatment prevents the onset of chronic ulcerative dermatopathy in juvenile Murray cod, Maccullochella peelii peelii (Mitchell). Aquaculture, 2011, 312, 19-25.	1.7	5
57	Origins of Adaptive Immunity. Critical Reviews in Immunology, 2011, 31, 61-71.	1.0	9
58	Clinical applications of aptamers and nucleic acid therapeutics in haematological malignancies. British Journal of Haematology, 2011, 155, 3-13.	1.2	30
59	The Ikaros gene family: Transcriptional regulators of hematopoiesis and immunity. Molecular Immunology, 2011, 48, 1272-1278.	1.0	182
60	Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. Journal of Cellular Biochemistry, 2011, 112, 2850-2864.	1.2	202
61	Shooting the messenger: Targeting signal transduction pathways in leukemia and related disorders. Critical Reviews in Oncology/Hematology, 2011, 78, 33-44.	2.0	8
62	Suppressor of Cytokine Signaling 1 Regulates Embryonic Myelopoiesis Independently of Its Effects on T Cell Development. Journal of Immunology, 2011, 186, 4751-4761.	0.4	12
63	Evolution of the Ikaros Gene Family: Implications for the Origins of Adaptive Immunity. Journal of Immunology, 2009, 182, 4792-4799.	0.4	28
64	Altering Presenilin Gene Activity in Zebrafish Embryos Causes Changes in Expression of Genes with Potential Involvement in Alzheimer's Disease Pathogenesis. Journal of Alzheimer's Disease, 2009, 16, 133-147.	1.2	25
65	A novel zebrafish jak2aV581F model shared features of human JAK2V617F polycythemia vera. Experimental Hematology, 2009, 37, 1379-1386.e4.	0.2	31
66	The multiple mini-interview: how long is long enough?. Medical Education, 2009, 43, 168-174.	1.1	35
67	Granulocyte colony-stimulating factor receptor: Stimulating granulopoiesis and much more. International Journal of Biochemistry and Cell Biology, 2009, 41, 2372-2375.	1.2	85
68	Cytochemical characterisation of the leucocytes and thrombocytes from Murray cod (Maccullochella peelii peelii, Mitchell). Fish and Shellfish Immunology, 2009, 26, 731-736.	1.6	33
69	Genetic and molecular diagnosis of severe congenital neutropenia. Current Opinion in Hematology, 2009, 16, 9-13.	1.2	41
70	Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood, 2009, 113, 2535-2546.	0.6	108
71	Functional Analysis of Pegasus: The  Atypical' Member of the Ikaros Gene Family Blood, 2009, 114, 3645-3645.	0.6	1
72	Functional interaction between mutations in the granulocyte colonyâ€stimulating factor receptor in severe congenital neutropenia. British Journal of Haematology, 2008, 142, 653-656.	1.2	12

#	Article	IF	Citations
73	Exercise-Induced Activation of STAT3 Signaling Is Increased with Age. Rejuvenation Research, 2008, 11, 717-724.	0.9	46
74	Stat5 as a diagnostic marker for leukemia. Expert Review of Molecular Diagnostics, 2008, 8, 73-82.	1.5	24
75	STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. Journal of Applied Physiology, 2007, 102, 1483-1489.	1.2	95
76	The myeloproliferative disorder–associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood, 2007, 109, 4924-4929.	0.6	112
77	The role of jak2a in zebrafish hematopoiesis. Blood, 2007, 110, 1824-1830.	0.6	56
78	Cytokine receptor signaling through the Jak–Stat–Socs pathway in disease. Molecular Immunology, 2007, 44, 2497-2506.	1.0	278
79	Blood cells of Murray cod Maccullochella peelii peelii (Mitchell). Journal of Fish Biology, 2007, 70, 973-980.	0.7	16
80	Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Molecular Ecology, 2007, 16, 1749-1763.	2.0	97
81	Evolution of Class I cytokine receptors. BMC Evolutionary Biology, 2007, 7, 120.	3.2	132
82	From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis. BMC Genomics, 2007, 8, 358.	1.2	64
83	Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expression Patterns, 2007, 7, 39-46.	0.3	72
84	The role of the granulocyte colony-stimulating factor receptor (G-CSF-R) in disease. Frontiers in Bioscience - Landmark, 2007, 12, 608.	3.0	31
85	Constitutive activation of zebrafish Stat5 expands hematopoietic cell populations in vivo. Experimental Hematology, 2006, 34, 179-187.	0.2	41
86	Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion. Experimental Hematology, 2005, 33, 182-188.	0.2	58
87	RBMXgene is essential for brain development in zebrafish. Developmental Dynamics, 2005, 234, 682-688.	0.8	46
88	Harnessing zebrafish for the study of white blood cell development and its perturbation. Experimental Hematology, 2004, 32, 789-796.	0.2	21
89	Conservation, duplication and divergence of the zebrafish stat5 genes. Gene, 2004, 338, 65-74.	1.0	35
90	Receptor activation and 2 distinct COOH-terminal motifs control G-CSF receptor distribution and internalization kinetics. Blood, 2004, 103, 571-579.	0.6	52

#	Article	IF	Citations
91	The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood, 2003, 102, 3238-3240.	0.6	94
92	Signaling mechanisms coupled to tyrosines in the granulocyte colony-stimulating factor receptor orchestrate G-CSF–induced expansion of myeloid progenitor cells. Blood, 2003, 101, 2584-2590.	0.6	80
93	Specificity and affinity motifs for Grb2 SH2-ligand interactions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8524-8529.	3.3	63
94	Tyrosine residues of the granulocyte colony-stimulating factor receptor transmit proliferation and differentiation signals in murine bone marrow cells. Blood, 2002, 99, 879-887.	0.6	39
95	Zebrafish SPI-1 (PU.1) Marks a Site of Myeloid Development Independent of Primitive Erythropoiesis: Implications for Axial Patterning. Developmental Biology, 2002, 246, 274-295.	0.9	193
96	The zebrafish as a model system for human disease. Frontiers in Bioscience - Landmark, 2002, 7, d827-833.	3.0	50
97	The zebrafish as a model system for human disease. Frontiers in Bioscience - Landmark, 2002, 7, d827.	3.0	27
98	Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood, 2001, 98, 3087-3096.	0.6	419
99	Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells. Proteomics, 2001, 1, 435-443.	1.3	26
100	Proteomic Analysis of Macrophage Differentiation. Journal of Biological Chemistry, 2001, 276, 26211-26217.	1.6	27
101	Somatostatin modulates G-CSF-induced but not interleukin-3-induced proliferative responses in myeloid 32D cells via activation of somatostatin receptor subtype 2. The Hematology Journal, 2001, 2, 322-329.	2.0	9
102	STAT3-mediated differentiation and survival of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27Kip1. Oncogene, 2000, 19, 3290-3298.	2.6	122
103	Combined corticosteroid/granulocyte colony-stimulating factor (G-CSF) therapy in the treatment of severe congenital neutropenia unresponsive to G-CSF. Experimental Hematology, 2000, 28, 1381-1389.	0.2	36
104	The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood, 2000, 95, 19-29.	0.6	255
105	Signaling mechanisms of cytokine receptors and their perturbances in disease. Molecular and Cellular Endocrinology, 2000, 160, 1-9.	1.6	57
106	The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood, 2000, 95, 19-29.	0.6	132
107	Tyrosine-Dependent and -Independent Mechanisms of STAT3 Activation by the Human Granulocyte Colony-Stimulating Factor (G-CSF) Receptor Are Differentially Utilized Depending on G-CSF Concentration. Blood, 1999, 93, 113-124.	0.6	101
108	Defective Internalization and Sustained Activation of Truncated Granulocyte Colony-Stimulating Factor Receptor Found in Severe Congenital Neutropenia/Acute Myeloid Leukemia. Blood, 1999, 93, 447-458.	0.6	124

#	Article	IF	Citations
109	Novel Point Mutation in the Extracellular Domain of the Granulocyte Colony-Stimulating Factor (G-Csf) Receptor in a Case of Severe Congenital Neutropenia Hyporesponsive to G-Csf Treatment. Journal of Experimental Medicine, 1999, 190, 497-508.	4.2	79
110	Sustained Receptor Activation and Hyperproliferation in Response to Granulocyte Colony-stimulating Factor (G-CSF) in Mice with a Severe Congenital Neutropenia/Acute Myeloid Leukemia–derived Mutation in the G-CSF Receptor Gene. Journal of Experimental Medicine, 1999, 189, 683-692.	4.2	130
111	Multiple Signals Mediate Proliferation, Differentiation, and Survival from the Granulocyte Colony-stimulating Factor Receptor in Myeloid 32D Cells. Journal of Biological Chemistry, 1999, 274, 14956-14962.	1.6	107
112	Expression of a Y559F Mutant CSF-1 Receptor in M1 Myeloid Cells: A Role for Src Kinases in CSF-1 Receptor-Mediated Differentiation. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 144-152.	1.7	33
113	Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity. Biochemical Journal, 1999, 339, 517-524.	1.7	17
114	Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity. Biochemical Journal, 1999, 339, 517.	1.7	5
115	Defective Internalization and Sustained Activation of Truncated Granulocyte Colony-Stimulating Factor Receptor Found in Severe Congenital Neutropenia/Acute Myeloid Leukemia. Blood, 1999, 93, 447-458.	0.6	11
116	Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 70-76.	1.9	29
117	cAMP Enhances CSF-1-Induced ERK Activity and c-fosmRNA Expression via a MEK-Dependent and Ras-Independent Mechanism in Macrophages. Biochemical and Biophysical Research Communications, 1998, 244, 475-480.	1.0	21
118	The Src-like Tyrosine Kinase Hck Is Activated by Granulocyte Colony-Stimulating Factor (G-CSF) and Docks to the Activated G-CSF Receptor. Biochemical and Biophysical Research Communications, 1998, 251, 117-123.	1.0	57
119	Perturbed Granulopoiesis in Mice With a Targeted Mutation in the Granulocyte Colony-Stimulating Factor Receptor Gene Associated With Severe Chronic Neutropenia. Blood, 1998, 92, 32-39.	0.6	105
120	cAMP suppresses p21ras and Raf-1 responses but not the Erk-1 response to granulocyte-colony-stimulating factor: possible Raf-1-independent activation of Erk-1. Biochemical Journal, 1997, 322, 79-87.	1.7	29
121	Virulence of influenza A virus for mouse lung. , 1997, 14, 187-194.		72
122	Cyclic AMP Inhibits Expression of D-Type Cyclins and cdk4 and Induces p27Kip1in G-CSF-Treated NFS-60 Cells. Biochemical and Biophysical Research Communications, 1996, 224, 10-16.	1.0	25
123	Changes in the neuraminidase of neurovirulent influenza virus strains. Virus Genes, 1995, 10, 253-260.	0.7	13
124	Changes in the hemagglutinin gene of the neurovirulent influenza virus strain A/NWS/33. Virus Genes, 1995, 10, 179-183.	0.7	15
125	Changes in the NS gene of neurovirulent strains of influenza affect splicing. Virus Genes, 1995, 10, 91-94.	0.7	7
126	Vectors for Cu2+-inducible production of glutathioneS-transferase-fusion proteins for single-step purification from yeast. Yeast, 1994, 10, 441-449.	0.8	30

#	Article	IF	CITATION
127	Characterisation of the urease-encoding gene complex of Yersinia enterocolitica. Gene, 1994, 145, 25-32.	1.0	37
128	Expression of HIV-1nef in yeast: The 27 kDa nef protein is myristylated and fractionates with the nucleus. Yeast, 1993, 9, 565-573.	0.8	16
129	Stability Analysis of the Lactococcus lactis DRC1 Lactose Plasmid Using Pulsed-Field Gel Electrophoresis. Plasmid, 1993, 29, 70-73.	0.4	8
130	Complete nucleotide sequence of the non-structural gene of the human influenza virus strain A/WS/33. Nucleic Acids Research, 1993, 21, 2257-2257.	6.5	4
131	Conjugally Transferable Phage Resistance Activities from Lactococcus lactis DRC1. Journal of Dairy Science, 1992, 75, 683-691.	1.4	15
132	Simultaneous conjugal transfer inLactococcusto genes involved in bacteriocin production and reduced susceptibility to bacteriophages. FEMS Microbiology Letters, 1990, 72, 209-213.	0.7	22
133	Single-step purification of shuttle vectors from yeast for high frequency back-transformation intoE. coli. Nucleic Acids Research, 1990, 18, 5319-5319.	6.5	112
134	Cytokine Receptor-Like Factor 3 (CRLF3) Contributes to Early Zebrafish Hematopoiesis. Frontiers in Immunology, 0, 13, .	2.2	3