
Xingang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1411054/publications.pdf Version: 2024-02-01

XINCANG LI

#	Article	IF	CITATIONS
1	The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees. PLoS Genetics, 2016, 12, e1006433.	3.5	136
2	Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Scientific Reports, 2018, 8, 15612.	3.3	67
3	Metabolomic and Transcriptomic Analyses of Anthocyanin Biosynthesis Mechanisms in the Color Mutant <i>Ziziphus jujuba</i> cv. Tailihong. Journal of Agricultural and Food Chemistry, 2020, 68, 15186-15198.	5.2	62
4	Development of Chloroplast Microsatellite Markers and Analysis of Chloroplast Diversity in Chinese Jujube (Ziziphus jujuba Mill.) and Wild Jujube (Ziziphus acidojujuba Mill.). PLoS ONE, 2015, 10, e0134519.	2.5	57
5	Comparative Analysis of Pigments, Phenolics, and Antioxidant Activity of Chinese Jujube (Ziziphus) Tj ETQq1 1	0.784314 r 3.8	gBT_{Overloc
6	Sugar transport played a more important role than sugar biosynthesis in fruit sugar accumulation during Chinese jujube domestication. Planta, 2018, 248, 1187-1199.	3.2	53
7	Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology. Tree Genetics and Genomes, 2016, 12, 1.	1.6	42
8	Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. Journal of Forest Research, 2015, 20, 493-500.	1.4	35
9	Comparative Analysis of the Complete Chloroplast Genome of Four Known Ziziphus Species. Genes, 2017, 8, 340.	2.4	35
10	Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau, China. Scientific Reports, 2016, 6, 24336.	3.3	33
11	ldentification of appropriate reference genes for RT-qPCR analysis in Ziziphus jujuba Mill Scientia Horticulturae, 2015, 197, 166-169.	3.6	29
12	Nutrient composition and quality traits of dried jujube fruits in seven producing areas based on metabolomics analysis. Food Chemistry, 2022, 385, 132627.	8.2	27
13	Transcript analyses of ethylene pathway genes during ripening of Chinese jujube fruit. Journal of Plant Physiology, 2018, 224-225, 1-10.	3.5	26
14	Genome-Wide Identification of WRKY Transcription Factors in Chinese jujube (Ziziphus jujuba Mill.) and Their Involvement in Fruit Developing, Ripening, and Abiotic Stress. Genes, 2019, 10, 360.	2.4	26
15	Jujube metabolome selection determined the edible properties acquired during domestication. Plant Journal, 2022, 109, 1116-1133.	5.7	25
16	Genetic diversity and population structure of sour jujube, Ziziphus acidojujuba. Tree Genetics and Genomes, 2015, 11, 1.	1.6	24
17	Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain. Mycorrhiza, 2017, 27, 487-497.	2.8	22
18	Soil Propagule Banks of Ectomycorrhizal Fungi Along Forest Development Stages After Mining. Microbial Ecology, 2015, 69, 768-777.	2.8	21

XINGANG LI

#	Article	IF	CITATIONS
19	Transcriptomic Analysis Reveals the Metabolic Mechanism of L-Ascorbic Acid in Ziziphus jujuba Mill Frontiers in Plant Science, 2016, 7, 122.	3.6	19
20	Anthocyanin Synthesis and the Expression Patterns of bHLH Transcription Factor Family during Development of the Chinese Jujube Fruit (Ziziphus jujuba Mill.). Forests, 2019, 10, 346.	2.1	19
21	Influences of Environmental Factors on Leaf Morphology of Chinese Jujubes. PLoS ONE, 2015, 10, e0127825.	2.5	16
22	The ectomycorrhizal fungal communities associated with Quercus liaotungensis in different habitats across northern China. Mycorrhiza, 2017, 27, 441-449.	2.8	16
23	Genetic diversity of Ziziphus mauritiana germplasm based on SSR markers and ploidy level estimation. Planta, 2019, 249, 1875-1887.	3.2	16
24	Genetic variation in leaf characters of F1 hybrids of Chinese Jujube. Scientia Horticulturae, 2019, 244, 372-378.	3.6	14
25	High-Density Genetic Map Construction and QTL Mapping of Leaf and Needling Traits in Ziziphus jujuba Mill. Frontiers in Plant Science, 2019, 10, 1424.	3.6	13
26	Integrative Morphological, Physiological, Proteomics Analyses of Jujube Fruit Development Provide Insights Into Fruit Quality Domestication From Wild Jujube to Cultivated Jujube. Frontiers in Plant Science, 2021, 12, 773825.	3.6	12
27	Mycorrhizal symbiosis reprograms ion fluxes and fatty acid metabolism in wild jujube during salt stress. Plant Physiology, 2022, 189, 2481-2499.	4.8	12
28	Transcript analyses reveal a comprehensive role of abscisic acid in modulating fruit ripening in Chinese jujube. BMC Plant Biology, 2019, 19, 189.	3.6	10
29	Biochemical Responses of Ten Ectomycorrhizal Fungal Isolates to Manganese. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	8
30	Shot-gun proteome and transcriptome mapping of the jujube floral organ and identification of a pollen-specific S-locus F-box gene. PeerJ, 2017, 5, e3588.	2.0	8
31	Metabolite and Gene Expression Analysis Underlying Temporal and Spatial Accumulation of Pentacyclic Triterpenoids in Jujube. Genes, 2022, 13, 823.	2.4	8
32	Soil propagule bank of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana) grown in a manganese mine wasteland. PLoS ONE, 2018, 13, e0198628.	2.5	7
33	Comprehensive analysis of antibacterial and anti-hepatoma activity of metabolites from jujube fruit. Food Bioscience, 2022, 47, 101511.	4.4	7
34	Development and characterization of microsatellite markers for sour jujube (<i>Ziziphus) Tj ETQq0 0 0 rgBT /Ove</i>	erlock 10 T	If 50 142 Td (
35	The complete chloroplast genome of <i>Acer truncatum</i> Bunge (Aceraceae). Mitochondrial DNA Part B: Resources, 2019, 4, 607-608.	0.4	4

³⁶Bioactive properties of streptomyces may affect the dominance of Tricholoma matsutake in shiro. 2.3 4 Symbiosis, 2020, 81, 1-13.

Xingang Li

#	Article	IF	CITATIONS
37	Association of Bitter Metabolites and Flavonoid Synthesis Pathway in Jujube Fruit. Frontiers in Nutrition, 2022, 9, .	3.7	3
38	The complete chloroplast genome sequence of <i>Juniperus saltuaria</i> (Cupressaceae). Mitochondrial DNA Part B: Resources, 2020, 5, 2565-2567.	0.4	1
39	The complete chloroplast genome of the endangered species Cephalotaxus hainanensis (Cephalotaxaceae). Mitochondrial DNA Part B: Resources, 2018, 3, 1280-1281.	0.4	0