
Michael A Jakupec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From bench to bedside – preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). Journal of Inorganic Biochemistry, 2006, 100, 891-904.	3.5	882
2	Antitumour metal compounds: more than theme and variations. Dalton Transactions, 2007, , 183-194.	3.3	767
3	KP1019, A New Redoxâ€Active Anticancer Agent – Preclinical Development and Results of a Clinical Phase I Study in Tumor Patients. Chemistry and Biodiversity, 2008, 5, 2140-2155.	2.1	732
4	Update of the Preclinical Situation of Anticancer Platinum Complexes: Novel Design Strategies and Innovative Analytical Approaches. Current Medicinal Chemistry, 2005, 12, 2075-2094.	2.4	657
5	NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chemical Science, 2014, 5, 2925-2932.	7.4	552
6	Structureâ [~] Activity Relationships for NAMI-A-type Complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = Imidazole, Indazole, 1,2,4-Triazole, 4-Amino-1,2,4-triazole, and 1-Methyl-1,2,4-triazole):Â Aquation, Redox Properties, Protein Binding, and Antiproliferative Activity. Journal of Medicinal Chemistry, 2007, 50, 2185-2193.	6.4	206
7	Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resistance Updates, 2008, 11, 1-16.	14.4	201
8	Redox behavior of tumor-inhibiting ruthenium(iii) complexes and effects of physiological reductants on their binding to GMP. Dalton Transactions, 2006, , 1796.	3.3	197
9	Transferrin binding and transferrin-mediated cellular uptake of the ruthenium coordination compound KP1019, studied by means of AAS, ESI-MS and CD spectroscopy. Journal of Analytical Atomic Spectrometry, 2004, 19, 46.	3.0	183
10	Influence of the Spacer Length on the <i>in Vitro</i> Anticancer Activity of Dinuclear Rutheniumâ^'Arene Compounds. Organometallics, 2008, 27, 2405-2407.	2.3	180
11	Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer Activity. Journal of Medicinal Chemistry, 2009, 52, 916-925.	6.4	168
12	Redox-Active Antineoplastic Ruthenium Complexes with Indazole:Â Correlation of in Vitro Potency and Reduction Potential. Journal of Medicinal Chemistry, 2005, 48, 2831-2837.	6.4	156
13	Gallium(III) and Iron(III) Complexes of α-N-Heterocyclic Thiosemicarbazones:  Synthesis, Characterization, Cytotoxicity, and Interaction with Ribonucleotide Reductase. Journal of Medicinal Chemistry, 2007, 50, 1254-1265.	6.4	145
14	Impact of Metal Coordination on Cytotoxicity of 3-Aminopyridine-2-carboxaldehyde Thiosemicarbazone (Triapine) and Novel Insights into Terminal Dimethylation. Journal of Medicinal Chemistry, 2009, 52, 5032-5043.	6.4	143
15	Gallium in Cancer Treatment. Current Topics in Medicinal Chemistry, 2004, 4, 1575-1583.	2.1	138
16	Highly Antiproliferative Ruthenium(II) and Osmium(II) Arene Complexes with Paullone-Derived Ligands. Organometallics, 2007, 26, 6643-6652.	2.3	134
17	Structure–Activity Relationships of Targeted Ru ^{II} (η ⁶ - <i>p</i> Cymene) Anticancer Complexes with Flavonol-Derived Ligands. Journal of Medicinal Chemistry, 2012, 55, 10512-10522.	6.4	132
18	Targeting the DNA-topoisomerase complex in a double-strike approach with a topoisomerase inhibiting moiety and covalent DNA binder. Chemical Communications, 2012, 48, 4839.	4.1	130

#	Article	IF	CITATIONS
19	Organometallic anticancer complexes of lapachol: metal centre-dependent formation of reactive oxygen species and correlation with cytotoxicity. Chemical Communications, 2013, 49, 3348.	4.1	127
20	Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action. Chemical Science, 2015, 6, 2449-2456.	7.4	127
21	Anticancer activity of the lanthanum compound [tris(1,10-phenanthroline)lanthanum(III)]trithiocyanate (KP772; FFC24). Biochemical Pharmacology, 2006, 71, 426-440.	4.4	124
22	The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer Letters, 2005, 226, 115-121.	7.2	111
23	In Vitro Anticancer Activity and Biologically Relevant Metabolization of Organometallic Ruthenium Complexes with Carbohydrateâ€Based Ligands. Chemistry - A European Journal, 2008, 14, 9046-9057.	3.3	111
24	Maltolâ€Derived Ruthenium–Cymene Complexes with Tumor Inhibiting Properties: The Impact of Ligand–Metal Bond Stability on Anticancer Activity In Vitro. Chemistry - A European Journal, 2009, 15, 12283-12291.	3.3	111
25	Novel metal(ii) arene 2-pyridinecarbothioamides: a rationale to orally active organometallic anticancer agents. Chemical Science, 2013, 4, 1837.	7.4	111
26	Tuning of lipophilicity and cytotoxic potency by structural variation of anticancer platinum(IV) complexes. Journal of Inorganic Biochemistry, 2011, 105, 46-51.	3.5	107
27	Physicochemical Studies and Anticancer Potency of Ruthenium η ⁶ - <i>p</i> -Cymene Complexes Containing Antibacterial Quinolones. Organometallics, 2011, 30, 2506-2512.	2.3	105
28	Is the Reactivity of M(II)â^'Arene Complexes of 3-Hydroxy-2(1 <i>H</i>)-pyridones to Biomolecules the Anticancer Activity Determining Parameter?. Inorganic Chemistry, 2010, 49, 7953-7963.	4.0	101
29	Preclinical characterization of anticancer gallium(III) complexes: Solubility, stability, lipophilicity and binding to serum proteins. Journal of Inorganic Biochemistry, 2006, 100, 1819-1826.	3.5	100
30	Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells. Journal of Analytical Atomic Spectrometry, 2009, 24, 51-61.	3.0	100
31	A SAR Study of Novel Antiproliferative Ruthenium and Osmium Complexes with Quinoxalinone Ligands in Human Cancer Cell Lines. Journal of Medicinal Chemistry, 2012, 55, 3398-3413.	6.4	98
32	Synthesis, structure, spectroscopic and in vitro antitumour studies of a novel gallium(III) complex with 2-acetylpyridine 4N-dimethylthiosemicarbazone. Journal of Inorganic Biochemistry, 2002, 91, 298-305.	3.5	97
33	An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin. Angewandte Chemie - International Edition, 2017, 56, 8267-8271.	13.8	97
34	Molecular mode of action of NKP-1339 – a clinically investigated ruthenium-based drug – involves ER- and ROS-related effects in colon carcinoma cell lines. Investigational New Drugs, 2016, 34, 261-268.	2.6	96
35	Synthesis, X-ray Diffraction Structures, Spectroscopic Properties, and in vitro Antitumor Activity of Isomeric (1H-1,2,4-Triazole)Ru(III) Complexes. Inorganic Chemistry, 2003, 42, 6024-6031.	4.0	94
36	Influence of the Arene Ligand, the Number and Type of Metal Centers, and the Leaving Group on the <i>in Vitro</i> Antitumor Activity of Polynuclear Organometallic Compounds. Organometallics, 2009, 28, 6260-6265.	2.3	92

#	Article	IF	CITATIONS
37	First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids <i>in vitro</i> . Metallomics, 2019, 11, 1044-1048.	2.4	92
38	Maleimide-functionalised organoruthenium anticancer agents and their binding to thiol-containing biomolecules. Chemical Communications, 2012, 48, 1475-1477.	4.1	91
39	Novel Di- and Tetracarboxylatoplatinum(IV) Complexes. Synthesis, Characterization, Cytotoxic Activity, and DNA Platination. Journal of Medicinal Chemistry, 2007, 50, 6692-6699.	6.4	88
40	Osmium(ii)–versus ruthenium(ii)–arene carbohydrate-based anticancer compounds: similarities and differences. Dalton Transactions, 2010, 39, 7345.	3.3	88
41	NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chemical Science, 2014, 5, 3135-3143.	7.4	87
42	Metal-Based Paullones as Putative CDK Inhibitors for Antitumor Chemotherapy. Journal of Medicinal Chemistry, 2007, 50, 6343-6355.	6.4	86
43	From Pyrone to Thiopyrone Ligandsâ^'Rendering Maltol-Derived Ruthenium(II)â^'Arene Complexes That Are Anticancer Active in Vitro. Organometallics, 2009, 28, 4249-4251.	2.3	85
44	Fluorescence properties and cellular distribution of the investigational anticancer drugTriapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) and its zinc(ii) complex. Dalton Transactions, 2010, 39, 704-706.	3.3	77
45	Novel tetracarboxylatoplatinum(<scp>iv</scp>) complexes as carboplatin prodrugs. Dalton Transactions, 2012, 41, 14404-14415.	3.3	76
46	Theoretical Investigations and Density Functional Theory Based Quantitative Structure–Activity Relationships Model for Novel Cytotoxic Platinum(IV) Complexes. Journal of Medicinal Chemistry, 2013, 56, 330-344.	6.4	76
47	3-Hydroxyflavones vs. 3-hydroxyquinolinones: structure–activity relationships and stability studies on Ru ^{II} (arene) anticancer complexes with biologically active ligands. Dalton Transactions, 2013, 42, 6193-6202.	3.3	74
48	Antitumor pentamethylcyclopentadienyl rhodium complexes of maltol and allomaltol: Synthesis, solution speciation and bioactivity. Journal of Inorganic Biochemistry, 2014, 134, 57-65.	3.5	73
49	Effect of metal ion complexation and chalcogen donor identity on the antiproliferative activity of 2-acetylpyridine N,N-dimethyl(chalcogen)semicarbazones. Journal of Inorganic Biochemistry, 2007, 101, 1946-1957.	3.5	71
50	Water-Soluble Mixed-Ligand Ruthenium(II) and Osmium(II) Arene Complexes with High Antiproliferative Activity. Organometallics, 2008, 27, 6587-6595.	2.3	71
51	Synthesis and characterization of novel bis(carboxylato)dichloridobis(ethylamine)platinum(IV) complexes with higher cytotoxicity than cisplatin. European Journal of Medicinal Chemistry, 2011, 46, 5456-5464.	5.5	70
52	Osmium NAMI-A Analogues:Â Synthesis, Structural and Spectroscopic Characterization, and Antiproliferative Properties. Inorganic Chemistry, 2007, 46, 5023-5033.	4.0	66
53	From hydrolytically labile to hydrolytically stable Rull–arene anticancer complexes with carbohydrate-derived co-ligands. Journal of Inorganic Biochemistry, 2011, 105, 224-231.	3.5	65
54	Solid-phase synthesis of oxaliplatin–TATpeptide bioconjugates. Dalton Transactions, 2012, 41, 3001-3005.	3.3	65

#	Article	IF	CITATIONS
55	Tuning the anticancer activity of maltol-derived ruthenium complexes by derivatization of the 3-hydroxy-4-pyrone moiety. Journal of Organometallic Chemistry, 2009, 694, 922-929.	1.8	64
56	<scp>l</scp> - and <scp>d</scp> -Proline Thiosemicarbazone Conjugates: Coordination Behavior in Solution and the Effect of Copper(II) Coordination on Their Antiproliferative Activity. Inorganic Chemistry, 2012, 51, 9309-9321.	4.0	64
57	Comparative studies of oxaliplatin-based platinum(<scp>iv</scp>) complexes in different in vitro and in vivo tumor models. Metallomics, 2017, 9, 309-322.	2.4	60
58	Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells. Journal of Inorganic Biochemistry, 2012, 116, 180-187.	3.5	59
59	Synthesis, Characterization, and in Vitro Antitumor Activity of Osteotropic Diam(m)ineplatinum(II) Complexes Bearing aN,N-Bis(phosphonomethyl)glycine Ligandâ€. Journal of Medicinal Chemistry, 2003, 46, 4946-4951.	6.4	58
60	Identification of the Structural Determinants for Anticancer Activity of a Ruthenium Arene Peptide Conjugate. Chemistry - A European Journal, 2013, 19, 9297-9307.	3.3	58
61	Metal–Arene Complexes with Indolo[3,2-c]-quinolines: Effects of Ruthenium vs Osmium and Modifications of the Lactam Unit on Intermolecular Interactions, Anticancer Activity, Cell Cycle, and Cellular Accumulation. Organometallics, 2013, 32, 903-914.	2.3	57
62	Synthesis and biological studies of some gold(I) complexes containing functionalised alkynes. Dalton Transactions, 2009, , 10841.	3.3	56
63	The gallium complex KP46 exerts strong activity against primary explanted melanoma cells and induces apoptosis in melanoma cell lines. Melanoma Research, 2009, 19, 283-293.	1.2	56
64	Conjugation of Organoruthenium(II) 3-(1H-Benzimidazol-2-yl)pyrazolo[3,4-b]pyridines and Indolo[3,2-d]benzazepines to Recombinant Human Serum Albumin: a Strategy To Enhance Cytotoxicity in Cancer Cells. Inorganic Chemistry, 2011, 50, 12669-12679.	4.0	56
65	Structureâ	4.0	55
66	Rutheniumâ^' and Osmiumâ^'Arene Complexes of 2-Substituted Indolo[3,2- <i>c</i>]quinolines: Synthesis, Structure, Spectroscopic Properties, and Antiproliferative Activity. Organometallics, 2011, 30, 273-283.	2.3	55
67	Anticancer Activity of Methyl-Substituted Oxaliplatin Analogs. Molecular Pharmacology, 2012, 81, 719-728.	2.3	54
68	Reversion of Structure-Activity Relationships of Antitumor Platinum Complexes by Acetoxime but Not Hydroxylamine Ligands. Molecular Pharmacology, 2007, 71, 357-365.	2.3	53
69	Introducing the 4-Phenyl-1,2,3-Triazole Moiety as a Versatile Scaffold for the Development of Cytotoxic Ruthenium(II) and Osmium(II) Arene Cyclometalates. Inorganic Chemistry, 2017, 56, 528-541.	4.0	52
70	Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible. European Journal of Medicinal Chemistry, 2004, 39, 707-714.	5.5	51
71	Organometallic indolo[3,2-c]quinolines versus indolo[3,2-d]benzazepines: synthesis, structural and spectroscopic characterization, and biological efficacy. Journal of Biological Inorganic Chemistry, 2010, 15, 903-918.	2.6	51
72	{(1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i>)-4-Methyl-1,2-cyclohexanediamine}oxalatoplatinum(II): A Novel Enantiomerically Pure Oxaliplatin Derivative Showing Improved Anticancer Activity in Vivo. Journal of Medicinal Chemistry, 2010, 53, 7356-7364.	6.4	51

#	Article	IF	CITATIONS
73	Cellular accumulation and DNA interaction studies of cytotoxic trans-platinum anticancer compounds. Journal of Biological Inorganic Chemistry, 2012, 17, 465-474.	2.6	51
74	New platinum–oxicam complexes as anti-cancer drugs. Synthesis, characterization, release studies from smart hydrogels, evaluation of reactivity with selected proteins and cytotoxic activity in vitro. Journal of Inorganic Biochemistry, 2010, 104, 799-814.	3.5	50
75	A glucose derivative as natural alternative to the cyclohexane-1,2-diamine ligand in the anticancer drug oxaliplatin?. ChemMedChem, 2007, 2, 505-514.	3.2	49
76	Novel Cis- and Trans-Configured Bis(oxime)platinum(II) Complexes: Synthesis, Characterization, and Cytotoxic Activity. Inorganic Chemistry, 2010, 49, 5669-5678.	4.0	49
77	En Route to Osmium Analogues of KP1019: Synthesis, Structure, Spectroscopic Properties and Antiproliferative Activity of <i>trans</i> -[Os ^{IV} Cl ₄ (Hazole) ₂]. Inorganic Chemistry, 2011, 50, 7690-7697.	4.0	49
78	X-ray Absorption Near Edge Structure Spectroscopy to Resolve the in Vivo Chemistry of the Redox-Active Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019). Journal of Medicinal Chemistry, 2013, 56, 1182-1196.	6.4	49
79	A Novel Class of Bis- and Tris-Chelate Diam(m)inebis(dicarboxylato)platinum(IV) Complexes as Potential Anticancer Prodrugs. Journal of Medicinal Chemistry, 2014, 57, 6751-6764.	6.4	49
80	Highly Cytotoxic Copper(II) Complexes with Modified Paullone Ligands. Inorganic Chemistry, 2010, 49, 302-311.	4.0	48
81	Synthesis, crystal structure and pH dependent cytotoxicity of (SP-4-2)-bis(2-aminoethanolato-lº2N,O)platinum(II) – a representative of novel pH sensitive anticancer platinum complexes. Inorganica Chimica Acta, 2004, 357, 3237-3244.	2.4	46
82	The First Metal-Based Paullone Derivative with High Antiproliferative Activity in Vitro. Inorganic Chemistry, 2006, 45, 1945-1950.	4.0	46
83	Towards targeting anticancer drugs: ruthenium(<scp>ii</scp>)–arene complexes with biologically active naphthoquinone-derived ligand systems. Dalton Transactions, 2016, 45, 13091-13103.	3.3	45
84	Rollover Cyclometalated Bipyridine Platinum Complexes as Potent Anticancer Agents: Impact of the Ancillary Ligands on the Mode of Action. Inorganic Chemistry, 2018, 57, 2851-2864.	4.0	45
85	Gallium and Other Main Group Metal Compounds as Antitumor Agents. , 2004, , 425-462.		45
86	Three-dimensional and co-culture models for preclinical evaluation of metal-based anticancer drugs. Investigational New Drugs, 2015, 33, 835-847.	2.6	44
87	Ruthenium(II) Complexes of Thiosemicarbazones: The First Water-Soluble Complex with pH-Dependent Antiproliferative Activity. European Journal of Inorganic Chemistry, 2007, 2007, 2870-2878.	2.0	43
88	Novel bis(carboxylato)dichlorido(ethane-1,2-diamine)platinum(IV) complexes with exceptionally high cytotoxicity. Journal of Inorganic Biochemistry, 2008, 102, 2072-2077.	3.5	41
89	The First Ruthenium-Based Paullones:  Syntheses, X-ray Diffraction Structures, and Spectroscopic and Antiproliferative Properties in Vitro. Inorganic Chemistry, 2007, 46, 3645-3656.	4.0	40
90	Ruthenium- and osmium-arene-based paullones bearing a TEMPO free-radical unit as potential anticancer drugs. Chemical Communications, 2012, 48, 8559.	4.1	40

#	Article	IF	CITATIONS
91	The role of the equatorial ligands for the redox behavior, mode of cellular accumulation and cytotoxicity of platinum(IV) prodrugs. Journal of Inorganic Biochemistry, 2016, 160, 264-274.	3.5	40
92	Striking Difference in Antiproliferative Activity of Ruthenium- and Osmium-Nitrosyl Complexes with Azole Heterocycles. Inorganic Chemistry, 2013, 52, 6273-6285.	4.0	39
93	Behavior of platinum(<scp>iv</scp>) complexes in models of tumor hypoxia: cytotoxicity, compound distribution and accumulation. Metallomics, 2016, 8, 422-433.	2.4	39
94	Novel Endothallâ€Containing Platinum(IV) Complexes: Synthesis, Characterization, and Cytotoxic Activity. Chemistry and Biodiversity, 2008, 5, 2160-2170.	2.1	38
95	Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity. Journal of Inorganic Biochemistry, 2012, 113, 47-54.	3.5	38
96	LA-ICP-MS imaging in multicellular tumor spheroids – a novel tool in the preclinical development of metal-based anticancer drugs. Metallomics, 2016, 8, 398-402.	2.4	38
97	X-ray Absorption Spectroscopy of an Investigational Anticancer Gallium(III) Drug: Interaction with Serum Proteins, Elemental Distribution Pattern, and Coordination of the Compound in Tissue. Journal of Medicinal Chemistry, 2012, 55, 5601-5613.	6.4	36
98	Triapine and a More Potent Dimethyl Derivative Induce Endoplasmic Reticulum Stress in Cancer Cells. Molecular Pharmacology, 2014, 85, 451-459.	2.3	35
99	Ruthenium-Nitrosyl Complexes with Glycine, I-Alanine, I-Valine, I-Proline, d-Proline, I-Serine, I-Threonine, and I-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity. Inorganic Chemistry, 2014, 53, 2718-2729.	4.0	35
100	Synthesis, Characterization, and Cytotoxic Activity of Novel Potentially pH-Sensitive Nonclassical Platinum(II) Complexes Featuring 1,3-Dihydroxyacetone Oxime Ligands. Inorganic Chemistry, 2011, 50, 10673-10681.	4.0	34
101	Unsymmetric Mono- and Dinuclear Platinum(IV) Complexes Featuring an Ethylene Glycol Moiety: Synthesis, Characterization, and Biological Activity. Journal of Medicinal Chemistry, 2012, 55, 11052-11061.	6.4	34
102	Influence of reducing agents on the cytotoxic activity of platinum(iv) complexes: induction of G2/M arrest, apoptosis and oxidative stress in A2780 and cisplatin resistant A2780cis cell lines. Metallomics, 2015, 7, 1078-1090.	2.4	34
103	Influence of the Arene Ligand and the Leaving Group on the Anticancer Activity of (Thio)maltol Ruthenium(II)–(η6-Arene) Complexes. Australian Journal of Chemistry, 2010, 63, 1521.	0.9	33
104	Mono-carboxylated diaminedichloridoplatinum(<scp>iv</scp>) complexes – selective synthesis, characterization, and cytotoxicity. Dalton Transactions, 2011, 40, 8187-8192.	3.3	33
105	Synthesis, Structure, Spectroscopic Properties, and Antiproliferative Activity In Vitro of Novel Osmium(III) Complexes with Azole Heterocycles. Inorganic Chemistry, 2008, 47, 7338-7347.	4.0	32
106	Organometallic 3-(1 <i>H</i> -Benzimidazol-2-yl)-1 <i>H</i> -pyrazolo[3,4- <i>b</i>]pyridines as Potential Anticancer Agents. Inorganic Chemistry, 2011, 50, 11715-11728.	4.0	32
107	Bulky <i>N</i> (, <i>N</i>)-(Di)alkylethane-1,2-diamineplatinum(II) Compounds as Precursors for Generating Unsymmetrically Substituted Platinum(IV) Complexes. Inorganic Chemistry, 2013, 52, 8151-8162.	4.0	32
108	Guanidine platinum(II) complexes: synthesis, in vitro antitumor activity, and DNA interactions. Journal of Inorganic Biochemistry, 2014, 133, 33-39.	3.5	32

#	Article	IF	CITATIONS
109	Thiomaltolâ€Based Organometallic Complexes with 1â€Methylimidazole as Leaving Group: Synthesis, Stability, and Biological Behavior. Chemistry - A European Journal, 2016, 22, 17269-17281.	3.3	32
110	Synthesis and in vivo anticancer evaluation of poly(organo)phosphazene-based metallodrug conjugates. Dalton Transactions, 2017, 46, 12114-12124.	3.3	32
111	Am(m)ines Make the Difference: Organoruthenium Am(m)ine Complexes and Their Chemistry in Anticancer Drug Development. Chemistry - A European Journal, 2013, 19, 4308-4318.	3.3	31
112	Synthesis, structures and in vitro cytotoxicity of some platinum(II) complexes containing thiocarbamate esters. Journal of Inorganic Biochemistry, 2008, 102, 2067-2071.	3.5	29
113	Novel glucose-ferrocenyl derivatives: synthesis and properties. New Journal of Chemistry, 2002, 26, 671-673.	2.8	28
114	Platinum(IV) Complexes Featuring One or Two Axial Ferrocene Bearing Ligands – Synthesis, Characterization, and Cytotoxicity. European Journal of Inorganic Chemistry, 2014, 2014, 484-492.	2.0	28
115	Synthesis, X-ray diffraction structure, spectroscopic properties and antiproliferative activity of a novel ruthenium complex with constitutional similarity to cisplatin. Dalton Transactions, 2009, , 3334.	3.3	27
116	{Ru(CO) _x }-Core complexes with benzimidazole ligands: synthesis, X-ray structure and evaluation of anticancer activity in vivo. Dalton Transactions, 2017, 46, 3025-3040.	3.3	27
117	Plecstatin-1 induces an immunogenic cell death signature in colorectal tumour spheroids. Metallomics, 2020, 12, 2121-2133.	2.4	27
118	1,3-Dioxoindan-2-carboxamides as Bioactive Ligand Scaffolds for the Development of Novel Organometallic Anticancer Drugs. Organometallics, 2015, 34, 848-857.	2.3	25
119	Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles. Journal of Biological Inorganic Chemistry, 2016, 21, 347-356.	2.6	25
120	Impact of the equatorial coordination sphere on the rate of reduction, lipophilicity and cytotoxic activity of platinum(IV) complexes. Journal of Inorganic Biochemistry, 2017, 174, 119-129.	3.5	25
121	{Ru(CO)x}-core complexes with selected azoles: Synthesis, X-ray structure, spectroscopy, DFT analysis and evaluation of cytotoxic activity against human cancer cells. Polyhedron, 2014, 81, 227-237.	2.2	24
122	Tetracarboxylatoplatinum(IV) complexes featuring monodentate leaving groups — A rational approach toward exploiting the platinum(IV) prodrug strategy. Journal of Inorganic Biochemistry, 2015, 153, 259-271.	3.5	24
123	Influence of ascorbic acid on the activity of the investigational anticancer drug KP1019. Journal of Biological Inorganic Chemistry, 2011, 16, 1205-1215.	2.6	23
124	Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes. Frontiers in Chemistry, 2013, 1, 27.	3.6	23
125	Novel Oximato-Bridged Platinum(II) Di- and Trimer(s): Synthetic, Structural, and in Vitro Anticancer Activity Studies. Inorganic Chemistry, 2012, 51, 7153-7163.	4.0	22
126	Dicopper(II) and Dizinc(II) Complexes with Nonsymmetric Dinucleating Ligands Based on Indolo[3,2- <i>c</i>]quinolines: Synthesis, Structure, Cytotoxicity, and Intracellular Distribution. Inorganic Chemistry, 2013, 52, 10137-10146.	4.0	22

#	Article	IF	CITATIONS
127	Solution equilibria and antitumor activities of pentamethylcyclopentadienyl rhodium complexes of picolinic acid and deferiprone. Journal of Coordination Chemistry, 2015, 68, 1583-1601.	2.2	22
128	A Novel Cytotoxic Cerium Complex: Aquatrichloridobis(1,10â€phenanthroline)cerium(III) (KP776). Synthesis, Characterization, Behavior in H ₂ O, Binding towards Biomolecules, and Antiproliferative Activity. Chemistry and Biodiversity, 2009, 6, 2153-2165.	2.1	21
129	[Os ^{IV} Cl ₅ (Hazole)] ^{â^²} Complexes: Synthesis, Structure, Spectroscopic Properties, and Antiproliferative Activity. Inorganic Chemistry, 2009, 48, 10737-10747.	4.0	21
130	Flavonoidâ€Based Organometallics with Different Metal Centers – Investigations of the Effects on Reactivity and Cytotoxicity. European Journal of Inorganic Chemistry, 2016, 2016, 240-246.	2.0	21
131	Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics, 2019, 11, 1716-1728.	2.4	21
132	Ruthenium- and osmium-arene complexes of 8-substituted indolo[3,2-c]quinolines: Synthesis, X-ray diffraction structures, spectroscopic properties, and antiproliferative activity. Inorganica Chimica Acta, 2012, 393, 252-260.	2.4	20
133	Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyrone-based organometallics. Dalton Transactions, 2016, 45, 724-733.	3.3	20
134	Lowâ€Generation Polyamidoamine Dendrimers as Drug Carriers for Platinum(IV) Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 1713-1720.	2.0	20
135	A highly cytotoxic modified paullone ligand bearing a TEMPO free-radical unit and its copper(ii) complex as potential hR2 RNR inhibitors. Chemical Communications, 2013, 49, 10007.	4.1	18
136	<i>N</i> - and <i>S</i> -donor leaving groups in triazole-based ruthena(<scp>ii</scp>)cycles: potent anticancer activity, selective activation, and mode of action studies. Dalton Transactions, 2018, 47, 4625-4638.	3.3	18
137	Post-digestion stabilization of osmium enables quantification by ICP-MS in cell culture and tissue. Analyst, The, 2017, 142, 2327-2332.	3.5	17
138	Synthesis, Cytotoxicity, and Structure-Activity Relationships of New Oxaliplatin Derivatives. Monatshefte Für Chemie, 2005, 136, 693-700.	1.8	16
139	Influence of extracellular pH on the cytotoxicity, cellular accumulation, and DNA interaction of novel pH-sensitive 2-aminoalcoholatoplatinum(II) complexes. Journal of Biological Inorganic Chemistry, 2013, 18, 249-260.	2.6	16
140	Single Spheroid Metabolomics: Optimizing Sample Preparation of Three-Dimensional Multicellular Tumor Spheroids. Metabolites, 2019, 9, 304.	2.9	16
141	Biological evaluation of novel thiomaltol-based organometallic complexes as topoisomerase IIα inhibitors. Journal of Biological Inorganic Chemistry, 2020, 25, 451-465.	2.6	16
142	Expanding on the Structural Diversity of Flavone- Derived RutheniumII(Æž6-arene) Anticancer Agents. Metallodrugs, 2015, 1, .	1.7	15
143	Complexes of N-hydroxyethyl-N-benzimidazolylmethylethylenediaminediacetic acid with group 12 metals and vanadium—Synthesis, structure and bioactivity of the vanadium complex. Journal of Inorganic Biochemistry, 2015, 147, 147-152.	3.5	15
144	Organometallic complexes of (thio)allomaltol-based Mannich-products: Synthesis, stability and preliminary biological investigations. Journal of Organometallic Chemistry, 2015, 782, 69-76.	1.8	15

#	Article	IF	CITATIONS
145	Tetra-(<i>p</i> -tolyl)antimony(III)-Containing Heteropolytungstates, [{(<i>p</i> -tolyl)Sb ^{III} } ₄ (<i>A</i> -f±-XW ₉ O ₃₄) ₂] (X = P, As, or Ge): Synthesis, Structure, and Study of Antibacterial and Antitumor Activity. Inorganic Chemistry, 2020, 59, 2978-2987.	^{<i> 4.0</i>}	nâ^'
146	Ein Organorutheniumâ€Tumortherapeutikum mit unerwartet hoher Selektivitäfür Plectin. Angewandte Chemie, 2017, 129, 8379-8383.	2.0	14
147	Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. Nanoscale Advances, 2021, 3, 249-262.	4.6	14
148	The influence of electroporation on cytotoxicity of anticancer ruthenium(III) complex KP1339 in vitro and in vivo. Anticancer Research, 2010, 30, 2055-63.	1.1	14
149	Functionalization of Ruthenium(II)(η ⁶ â€ <i>p</i> â€eymene)(3â€hydroxyâ€2â€pyridone) Complexes (Thio)Morpholine: Synthesis and Bioanalytical Studies. ChemPlusChem, 2017, 82, 841-847.	with 2.8	13
150	Antiproliferative Copper(II) and Platinum(II) Complexes with Bidentate N,Nâ€Đonor Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 3115-3124.	2.0	13
151	Morphoâ€metabotyping the oxidative stress response. Scientific Reports, 2021, 11, 15471.	3.3	13
152	Hydrolysis and Cytotoxic Properties of Osmium(II)/(III)-DMSO-Azole Complexes. Short Communication. Chemistry and Biodiversity, 2008, 5, 1588-1593.	2.1	12
153	Synthesis, structures and in vitro cytotoxicity of some cationic cis-platinum(II) complexes containing chelating thiocarbamates. Journal of Inorganic Biochemistry, 2011, 105, 462-466.	3.5	12
154	The rearrangement of tosylated flavones to 1′-(alkylamino)aurones with primary amines. Tetrahedron, 2015, 71, 8953-8959.	1.9	12
155	Platinum(IV) Complexes Featuring Axial Michael Acceptor Ligands - Synthesis, Characterization, and Cytotoxicity. European Journal of Inorganic Chemistry, 2017, 2017, 4049-4054.	2.0	12
156	Gallium and other main group metal compounds as antitumor agents. Metal Ions in Biological Systems, 2004, 42, 425-62.	0.4	12
157	Diamminetetrakis(carboxylato)platinum(Ⅳ) Complexes – Synthesis, Characterization, and Cytotoxicity. Chemistry and Biodiversity, 2012, 9, 1840-1848.	2.1	11
158	Amidoxime platinum(<scp>ii</scp>) complexes: pH-dependent highly selective generation and cytotoxic activity. New Journal of Chemistry, 2017, 41, 6840-6848.	2.8	11
159	Comparative equilibrium and structural studies of new pentamethylcyclopentadienyl rhodium complexes bearing (O,N) donor bidentate ligands. Journal of Organometallic Chemistry, 2017, 846, 287-295.	1.8	10
160	IntroducingN-,P-, andS-donor leaving groups: an investigation of the chemical and biological properties of ruthenium, rhodium and iridium thiopyridone piano stool complexes. Dalton Transactions, 2020, 49, 15693-15711.	3.3	10
161	Synthesis, Modification, and Biological Evaluation of a Library of Novel Waterâ€Soluble Thiopyridoneâ€Based Organometallic Complexes and Their Unexpected (Biological) Behavior. Chemistry - A European Journal, 2020, 26, 5419-5433.	3.3	10
162	Investigations on the Anticancer Potential of Benzothiazole-Based Metallacycles. Frontiers in Chemistry, 2020, 8, 209.	3.6	10

#	Article	IF	CITATIONS
163	Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorganic Chemistry, 2021, 60, 9805-9819.	4.0	9
164	Multifunctional Pt(<scp>iv</scp>) prodrug candidates featuring the carboplatin core and deferoxamine. Dalton Transactions, 2021, 50, 8167-8178.	3.3	9
165	Synthesis andin vitroAntitumor Potency of (Cyclohexane-1,2-Diamine)Platinum(II) Complexes with Aminotris(Methylenephosphonic Acid) as Bone-Seeking Ligand. Bioinorganic Chemistry and Applications, 2005, 3, 179-190.	4.1	8
166	Osmiumâ€Nitrosyl Complexes with Glycine, Picolinic Acid, Â <scp>L</scp> â€Proline and <scp>D</scp> â€Proline: Synthesis, Structures and Antiproliferative Activity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1590-1597.	1.2	8
167	The Impact of Leaving Group Variation on the Anticancer Activity of Molybdenocenes. Organometallics, 2018, 37, 3909-3916.	2.3	8
168	The First Anticancer Tris(pyrazolyl)borate Molybdenum(IV) Complexes: Tested in Vitro and in Vivo—A Comparison of O,O â€, S,O â€, and N , N―Chelate Effects. Chemistry - A European Journal, 2020, 26, 2211-2221.	3.3	8
169	Novel phthiocol-based organometallics with tridentate coordination motif and their unexpected cytotoxic behaviour. Dalton Transactions, 2020, 49, 1393-1397.	3.3	8
170	The Effect of Cytoprotective Agents in Platinum Anticancer Therapy. , 2004, , 179-208.		8
171	Aqueous chemistry and antiproliferative activity of a pyrone-based phosphoramidate Ru(arene) anticancer agent. Dalton Transactions, 2014, 43, 9851.	3.3	7
172	Bis―and Tetrakis(carboxylato)platinum(IV) Complexes with Mixed Axial Ligands – Synthesis, Characterization, and Cytotoxicity. Chemistry and Biodiversity, 2015, 12, 559-574.	2.1	7
173	Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group. Molecules, 2019, 24, 2373.	3.8	7
174	Bis- and Tris(carboxylato)platinum(IV) Complexes with Mixed Am(m)ine Ligands in thetransPosition Exhibiting Exceptionally High Cytotoxicity. European Journal of Inorganic Chemistry, 2015, 2015, 1700-1708.	2.0	6
175	Synthesis, characterization, cytotoxic activity, and 19F NMR spectroscopic investigations of (OC-6-33)-diacetato(ethane-1,2-diamine)bis(3,3,3-trifluoropropanoato)platinum(IV) and its platinum(II) counterpart. Inorganica Chimica Acta, 2019, 490, 190-199.	2.4	6
176	Naphthoquinones of natural origin: Aqueous chemistry and coordination to half-sandwich organometallic cations. Journal of Organometallic Chemistry, 2020, 907, 121070.	1.8	6
177	First insights into the novel class of organometallic compounds bearing a bidentate selenopyridone coordination motif: Synthesis, characterization, stability and biological investigations. Inorganica Chimica Acta, 2020, 513, 119919.	2.4	6
178	Systematic Study on the Cytotoxic Potency of Commonly Used Dimeric Metal Precursors in Human Cancer Cell Lines. ChemistryOpen, 2022, 11, e202200019.	1.9	6
179	Waterâ€Soluble Cationic Derivatives of Indirubin, the Active Anticancer Component from <i>Indigo naturalis</i> . Chemistry and Biodiversity, 2012, 9, 2175-2185.	2.1	5
180	Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1342-1347.	2.2	5

#	Article	IF	CITATIONS
181	Heart-cut 2DSEC-RP-LC-ICP-MS as a screening tool in metal-based anticancer research. Journal of Analytical Atomic Spectrometry, 2019, 34, 1279-1286.	3.0	5
182	Thermodynamic Genome-Scale Metabolic Modeling of Metallodrug Resistance in Colorectal Cancer. Cancers, 2021, 13, 4130.	3.7	5
183	Highly Aromatic Flavan-3-ol Derivatives from Palaeotropical Artocarpus lacucha BuchHam Possess Radical Scavenging and Antiproliferative Properties. Molecules, 2021, 26, 1078.	3.8	4
184	Synthesis, Characterization, Cytotoxicity, and Time-Dependent NMR Spectroscopic Studies of (SP) Tj ETQq0 0 0 J Journal of Inorganic Chemistry, 2019, 2019, 856-864.	rgBT /Ove 2.0	erlock 10 Tf 50 3
185	Synthesis, characterization, lipophilicity and cytotoxic properties of novel bis(carboxylato)oxalatobis(1-propylamine)platinum(IV) complexes. Inorganica Chimica Acta, 2019, 491, 76-83.	2.4	3
186	KP772 overcomes multiple drug resistance in malignant lymphoma and leukemia cells in vitro by inducing Bcl-2-independent apoptosis and upregulation of Harakiri. Journal of Biological Inorganic Chemistry, 2021, 26, 897-907.	2.6	3
187	The effect of cytoprotective agents in platinum anticancer therapy. Metal Ions in Biological Systems, 2004, 42, 179-208.	0.4	2
188	Water-soluble trithiolato-bridged dinuclear ruthenium(II) and osmium(II) arene complexes with bisphosphonate functionalized ligands as anticancer organometallics. Journal of Inorganic Biochemistry, 2021, 225, 111618.	3.5	1
189	Innenrücktitelbild: Ein Organorutheniumâ€īumortherapeutikum mit unerwartet hoher Selektivitäfür Plectin (Angew. Chem. 28/2017). Angewandte Chemie, 2017, 129, 8415-8415.	2.0	0