
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C/D box snoRNA SNORD113-6/AF357425 plays a dual role in integrin signalling and arterial fibroblast function via pre-mRNA processing and 2′O-ribose methylation. Human Molecular Genetics, 2022, 31, 1051-1066.	1.4	14
2	Cardiac inflammation and microvascular procoagulant changes are decreased in second wave compared to first wave deceased COVID-19 patients. International Journal of Cardiology, 2022, 349, 157-165.	0.8	10
3	MEC8 regulates Tissue Factor Pathway Inhibitor 2 (TFPI2) expression in the endothelium. Scientific Reports, 2022, 12, 843.	1.6	7
4	OUP accepted manuscript. Cardiovascular Research, 2022, , .	1.8	0
5	Long noncoding RNAs in cardiometabolic disorders. FEBS Letters, 2022, 596, 1367-1387.	1.3	9
6	The splicingâ€regulatory IncRNA NTRAS sustains vascular integrity. EMBO Reports, 2022, , e54157.	2.0	2
7	The long non-coding RNA MEG8 induces an endothelial barrier through regulation of microRNA-370 and -494 processing. Journal of Cell Science, 2022, 135, .	1.2	3
8	Diaphragm Pathology in Critically Ill Patients With COVID-19 and Postmortem Findings From 3 Medical Centers. JAMA Internal Medicine, 2021, 181, 122.	2.6	72
9	LncRNA AERRIE Is Required for Sulfatase 1 Expression, but Not for Endothelial-to-Mesenchymal Transition. International Journal of Molecular Sciences, 2021, 22, 8088.	1.8	3
10	COVID-19 is associated with distinct myopathic features in the diaphragm of critically ill patients. BMJ Open Respiratory Research, 2021, 8, e001052.	1.2	5
11	Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nature Communications, 2021, 12, 84.	5.8	48
12	Long noncoding RNAs in key cellular processes involved in aortic aneurysms. Atherosclerosis, 2020, 292, 112-118.	0.4	26
13	Scientists on the Spot: Rejuvenating the heart with RNA. Cardiovascular Research, 2020, 116, e182-e183.	1.8	0
14	The Long Non-coding Road to Atherosclerosis. Current Atherosclerosis Reports, 2020, 22, 55.	2.0	34
15	Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function. Communications Biology, 2020, 3, 265.	2.0	32
16	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	1.8	39
17	Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nature Communications, 2020, 11, 2039.	5.8	63
18	RNA-based therapeutics in cardiovascular disease. Current Opinion in Cardiology, 2020, 35, 191-198.	0.8	10

#	Article	IF	CITATIONS
19	Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature. Frontiers in Oncology, 2020, 10, 612802.	1.3	31
20	Long Non-coding RNA Aerrie Controls DNA Damage Repair via YBX1 to Maintain Endothelial Cell Function. Frontiers in Cell and Developmental Biology, 2020, 8, 619079.	1.8	20
21	The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4180-4187.	3.3	39
22	KBTBD13 is an actin-binding protein that modulates muscle kinetics. Journal of Clinical Investigation, 2020, 130, 754-767.	3.9	25
23	Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovascular Research, 2019, 115, 230-242.	1.8	105
24	Exosomes and non-coding RNA, the healers of the heart?. Cardiovascular Research, 2019, 116, 258-259.	1.8	5
25	The metalloproteinase ADAM15 is upregulated by shear stress and promotes survival of endothelial cells. Journal of Molecular and Cellular Cardiology, 2019, 134, 51-61.	0.9	24
26	Pleiotropic effects of laminar flow and statins depend on the Krüppel-like factor-induced lncRNA MANTIS. European Heart Journal, 2019, 40, 2523-2533.	1.0	58
27	Age-related regulation and region-specific distribution of ion channel subunits promoting atrial fibrillation in human left and right atria. Europace, 2019, 21, 1261-1269.	0.7	21
28	Long noncoding RNA in cardiac aging and disease. Journal of Molecular Cell Biology, 2019, 11, 860-867.	1.5	32
29	Long Non-Coding RNA in Vascular Disease and Aging. Non-coding RNA, 2019, 5, 26.	1.3	21
30	Role of Noncoding RNAs in the Pathogenesis of Abdominal Aortic Aneurysm. Circulation Research, 2019, 124, 619-630.	2.0	66
31	Hematopoietic Deficiency of the Long Noncoding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation. Circulation, 2019, 139, 1320-1334.	1.6	165
32	H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation, 2018, 138, 1551-1568.	1.6	169
33	TUGging at heartstrings: control of aortic valve calcification by non-coding RNA. Cardiovascular Research, 2018, 114, 10-11.	1.8	0
34	The IncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nature Communications, 2018, 9, 237.	5.8	154
35	Clonal Expansion of Endothelial Cells Contributes to Ischemia-Induced Neovascularization. Circulation Research, 2018, 122, 670-677.	2.0	91
36	Switch in Laminin β2 to Laminin β1 Isoforms During Aging Controls Endothelial Cell Functions—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1170-1177.	1.1	32

#	Article	IF	CITATIONS
37	Stiffness-Induced Endothelial DLC-1 Expression Forces Leukocyte Spreading through Stabilization of the ICAM-1 Adhesome. Cell Reports, 2018, 24, 3115-3124.	2.9	31
38	LncRNAs Coming of Age. Circulation Research, 2018, 123, 535-537.	2.0	18
39	Endothelial Cell Metabolism in Atherosclerosis. Frontiers in Cell and Developmental Biology, 2018, 6, 82.	1.8	120
40	Non-coding RNAs in cardiovascular health and disease. Non-coding RNA Research, 2018, 3, 99.	2.4	4
41	Circular <scp>RNAs</scp> in heart failure. European Journal of Heart Failure, 2017, 19, 701-709.	2.9	168
42	Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D. Cardiovascular Research, 2017, 113, 681-691.	1.8	37
43	Endothelial transcription factor KLF2 negatively regulates liver regeneration via induction of activin A. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3993-3998.	3.3	31
44	Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 2017, 136, 65-79.	1.6	196
45	Long Noncoding RNA Meg3 Controls Endothelial Cell Aging and Function. Journal of the American College of Cardiology, 2016, 68, 2589-2591.	1.2	122
46	Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nature Medicine, 2016, 22, 1140-1150.	15.2	222
47	Preclinical Development of a MicroRNA-Based Therapy for Elderly Patients With Myocardial Infarction. Journal of the American College of Cardiology, 2016, 68, 1557-1571.	1.2	99
48	MicroRNAs in cardiovascular ageing. Journal of Physiology, 2016, 594, 2085-2094.	1.3	44
49	Long Noncoding RNAs. Journal of the American College of Cardiology, 2016, 67, 1214-1226.	1.2	392
50	IFN-β affects the angiogenic potential of circulating angiogenic cells by activating calpain 1. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1667-H1678.	1.5	3
51	Circulating MicroRNAs Link Inflammation to Impaired Wound Healing in Diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1296-1297.	1.1	3
52	Laminar Shear Stress Inhibits Endothelial Cell Metabolism via KLF2-Mediated Repression of PFKFB3. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 137-145.	1.1	213
53	MicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2. Journal of Molecular and Cellular Cardiology, 2015, 88, 111-119.	0.9	50
54	Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles. FEBS Letters, 2015, 589, 3182-3188.	1.3	63

#	Article	IF	CITATIONS
55	Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA. Circulation Research, 2015, 117, 884-890.	2.0	310
56	MicroRNAs in myocardial infarction. Nature Reviews Cardiology, 2015, 12, 135-142.	6.1	317
57	Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo. PLoS ONE, 2015, 10, e0145777.	1.1	20
58	Vascular Niche Controls Organ Regeneration. Circulation Research, 2014, 114, 1077-1079.	2.0	11
59	Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovascular Research, 2014, 103, 564-572.	1.8	121
60	Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth. Circulation Research, 2014, 114, 1389-1397.	2.0	815
61	Non-coding RNA enhances cardiac development. Journal of Molecular and Cellular Cardiology, 2014, 76, 205-207.	0.9	1
62	MicroRNA-126 in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, e15-e16.	1.1	29
63	Intercellular Transport of MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 186-192.	1.1	336
64	Immunosenescence-associated microRNAs in age and heart failure. European Journal of Heart Failure, 2013, 15, 385-393.	2.9	48
65	MicroRNA-34a regulates cardiac ageing and function. Nature, 2013, 495, 107-110.	13.7	717
66	Reduced MicroRNA-150 Is Associated with Poor Survival in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 294-302.	2.5	153
67	Endothelial MicroRNA Tells Smooth Muscle Cells to Proliferate. Circulation Research, 2013, 113, 7-8.	2.0	5
68	Atheroprotective mechanisms of shear stress-regulated microRNAs. Thrombosis and Haemostasis, 2012, 108, 616-620.	1.8	69
69	MicroRNAs Control Vascular Endothelial Growth Factor Signaling. Circulation Research, 2012, 111, 1388-1390.	2.0	12
70	MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood, 2012, 119, 1607-1616.	0.6	211
71	Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 2012, 14, 249-256.	4.6	1,170
72	Micro-RNA-34a Contributes to the Impaired Function of Bone Marrow-Derived Mononuclear Cells From Patients With Cardiovascular Disease. Journal of the American College of Cardiology, 2012, 59, 2107-2117.	1.2	82

#	Article	IF	CITATIONS
73	MicroRNAs and Aneurysm Formation. Trends in Cardiovascular Medicine, 2011, 21, 172-177.	2.3	40
74	MicroRNA-29 in Aortic Dilation: Implications for Aneurysm Formation. Circulation Research, 2011, 109, 1115-1119.	2.0	326
75	Krüppel-like factor 2 improves neovascularization capacity of aged proangiogenic cells. European Heart Journal, 2011, 32, 371-377.	1.0	39
76	Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO Journal, 2011, 30, 4142-4156.	3.5	169
77	KLF2-induced actin shear fibers control both alignment to flow and JNK signaling in vascular endothelium. Blood, 2010, 115, 2533-2542.	0.6	82
78	Vascular microRNAs. Current Drug Targets, 2010, 11, 943-949.	1.0	142
79	KLF2 Primes the Antioxidant Transcription Factor Nrf2 for Activation in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1339-1346.	1.1	167
80	KLF2 Suppresses TGF-Î ² Signaling in Endothelium Through Induction of Smad7 and Inhibition of AP-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 532-539.	1.1	92
81	Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood, 2007, 109, 4249-4257.	0.6	131
82	KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood, 2006, 107, 4354-4363.	0.6	307
83	Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar Functions. Molecular Biology of the Cell, 2005, 16, 260-269.	0.9	352