
Albert Gili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410716/publications.pdf Version: 2024-02-01

ALREDT CILL

#	Article	IF	CITATIONS
1	Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts. Catalysis Science and Technology, 2022, 12, 1229-1244.	4.1	6
2	Atomic-Scale Insights into Nickel Exsolution on LaNiO ₃ Catalysts via <i>In Situ</i> Electron Microscopy. Journal of Physical Chemistry C, 2022, 126, 786-796.	3.1	14
3	Steering the Methane Dry Reforming Reactivity of Ni/La ₂ O ₃ Catalysts by Controlled In Situ Decomposition of Doped La ₂ NiO ₄ Precursor Structures. ACS Catalysis, 2021, 11, 43-59.	11.2	38
4	Steering the methanol steam reforming reactivity of intermetallic Cu–In compounds by redox activation: stability <i>vs.</i> formation of an intermetallic compound–oxide interface. Catalysis Science and Technology, 2021, 11, 5518-5533.	4.1	3
5	The sol–gel autocombustion as a route towards highly CO ₂ -selective, active and long-term stable Cu/ZrO ₂ methanol steam reforming catalysts. Materials Chemistry Frontiers, 2021, 5, 5093-5105.	5.9	12
6	Silicon oxycarbonitride ceramic containing nickel nanoparticles: from design to catalytic application. Materials Advances, 2021, 2, 1715-1730.	5.4	8
7	Mechanistic in situ insights into the formation, structural and catalytic aspects of the La2NiO4 intermediate phase in the dry reforming of methane over Ni-based perovskite catalysts. Applied Catalysis A: General, 2021, 612, 117984.	4.3	16
8	Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials. Materials Today, 2021, 47, 53-68.	14.2	30
9	Steering the methanol steam reforming performance of Cu/ZrO2 catalysts by modification of the Cu-ZrO2 interface dimensions resulting from Cu loading variation. Applied Catalysis A: General, 2021, 623, 118279.	4.3	13
10	In Situ-Determined Catalytically Active State of LaNiO ₃ in Methane Dry Reforming. ACS Catalysis, 2020, 10, 1102-1112.	11.2	55
11	Mechanistic insights into the catalytic methanol steam reforming performance of Cu/ZrO2 catalysts by in situ and operando studies. Journal of Catalysis, 2020, 391, 497-512.	6.2	41
12	Sintering of ceramics for clay in situ resource utilization on Mars. Open Ceramics, 2020, 3, 100008.	2.0	8
13	Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies. Acta Astronautica, 2020, 174, 241-253.	3.2	23
14	Zirconium Oxycarbide: A Highly Stable Catalyst Material for Electrochemical Energy Conversion. ChemPhysChem, 2019, 20, 3067-3073.	2.1	6
15	Revealing the Mechanism of Multiwalled Carbon Nanotube Growth on Supported Nickel Nanoparticles by in Situ Synchrotron X-ray Diffraction, Density Functional Theory, and Molecular Dynamics Simulations. ACS Catalysis, 2019, 9, 6999-7011.	11.2	36
16	Ceria-Based Dual-Phase Membranes for High-Temperature Carbon Dioxide Separation: Effect of Iron Doping and Pore Generation with MgO Template. Membranes, 2019, 9, 108.	3.0	8
17	Prussian Blue Iron–Cobalt Mesocrystals as a Template for the Growth of Fe/Co Carbide (Cementite) and Fe/Co Nanocrystals. Chemistry of Materials, 2019, 31, 8163-8173.	6.7	15
18	On the structural stability of crystalline ceria phases in undoped and acceptor-doped ceria materials under <i>in situ</i> reduction conditions. CrystEngComm, 2019, 21, 145-154.	2.6	32

Albert Gili

#	Article	IF	CITATIONS
19	Reactive metal-support interaction in the Cu-In ₂ O ₃ system: intermetallic compound formation and its consequences for CO ₂ -selective methanol steam reforming. Science and Technology of Advanced Materials, 2019, 20, 356-366.	6.1	26
20	Transmission <i>in situ</i> and <i>operando</i> high temperature X-ray powder diffraction in variable gaseous environments. Review of Scientific Instruments, 2018, 89, 033904.	1.3	33
21	Hydrogen reduction and metal-support interaction in a metastable metal-oxide system: Pd on rhombohedral In2O3. Journal of Solid State Chemistry, 2018, 266, 93-99.	2.9	11
22	Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. ACS Catalysis, 2018, 8, 8739-8750.	11.2	60
23	Formation of Pd-Ce intermetallic compounds by reductive metal-support interaction. Journal of Solid State Chemistry, 2018, 265, 176-183.	2.9	3
24	Sol–gel method for synthesis of Mn–Na2WO4/SiO2 catalyst for methane oxidative coupling. Catalysis Today, 2014, 236, 12-22.	4.4	47
25	Performance Analysis of a Porous Packed Bed Membrane Reactor for Oxidative Coupling of Methane: Structural and Operational Characteristics. Energy & Fuels, 2014, 28, 877-890.	5.1	30
26	Design and demonstration of an experimental membrane reactor set-up for oxidative coupling of methane. Chemical Engineering Research and Design, 2013, 91, 2671-2681.	5.6	28