
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	pH influences the interfacial properties of blue whiting (M. poutassou) and whey protein hydrolysates determining the physical stability of fish oil-in-water emulsions. Food Hydrocolloids, 2022, 122, 107075.	5.6	22
2	Valorisation of blood protein from livestock to produce haem ironâ€fortified hydrolysates with antioxidant activity. International Journal of Food Science and Technology, 2022, 57, 2479-2486.	1.3	6
3	Structure of whey protein hydrolysate used as emulsifier in wet and dried oil delivery systems: Effect of pH and drying processing. Food Chemistry, 2022, 390, 133169.	4.2	13
4	Influence of emulsifier type and encapsulating agent on the in vitro digestion of fish oil-loaded microcapsules produced by spray-drying. Food Chemistry, 2022, 392, 133257.	4.2	8
5	Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from <i>Tenebrio molitor</i> . Food and Function, 2021, 12, 873-880.	2.1	21
6	Unravelling the α-glucosidase inhibitory properties of chickpea protein by enzymatic hydrolysis and in silico analysis. Food Bioscience, 2021, 44, 101328.	2.0	14
7	Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chemistry, 2021, 354, 129473.	4.2	32
8	Omega-3 nano-microencapsulates produced by electrohydrodynamic processing. , 2021, , 345-370.		0
9	Bioactive fish hydrolysates resistance to food processing. LWT - Food Science and Technology, 2020, 117, 108670.	2.5	21
10	Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides. Food and Bioproducts Processing, 2020, 123, 217-224.	1.8	30
11	Evaluation of the bioactive potential of foods fortified with fish protein hydrolysates. Food Research International, 2020, 137, 109572.	2.9	26
12	Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods, 2020, 9, 983.	1.9	53
13	Novozyme 435 and Lipozyme RM IM Preferably Esterify Polyunsaturated Fatty Acids at the snâ $\in 2$ Position. European Journal of Lipid Science and Technology, 2020, 122, 2000115.	1.0	10
14	Development of Fish Oil-Loaded Microcapsules Containing Whey Protein Hydrolysate as Film-Forming Material for Fortification of Low-Fat Mayonnaise. Foods, 2020, 9, 545.	1.9	34
15	Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods, 2020, 9, 636.	1.9	43
16	Protein derived emulsifiers with antioxidant activity for stabilization of omega-3 emulsions. Food Chemistry, 2020, 329, 127148.	4.2	30
17	Production and identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from discarded Sardine pilchardus protein. Food Chemistry, 2020, 328, 127096.	4.2	57
18	Evaluation of <i>Tenebrio molitor</i> protein as a source of peptides for modulating physiological processes. Food and Function, 2020, 11, 4376-4386.	2.1	31

#	Article	IF	CITATIONS
19	Bi-objective optimization of tuna protein hydrolysis to produce aquaculture feed ingredients. Food and Bioproducts Processing, 2019, 115, 26-35.	1.8	14
20	Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renewable Energy, 2019, 140, 1-8.	4.3	77
21	Valorisation of tuna viscera by endogenous enzymatic treatment. International Journal of Food Science and Technology, 2019, 54, 1100-1108.	1.3	11
22	A lumped model of the lipase catalyzed hydrolysis of sardine oil to maximize polyunsaturated fatty acids content in acylglycerols. Food Chemistry, 2018, 240, 286-294.	4.2	31
23	Effect of the supplementation of live preys enriched in cod liver oil on the survival rate, growth and fatty acid profile of meagre (<i>Argyrosomus regius</i>) larvae. Aquaculture Research, 2018, 49, 1133-1141.	0.9	3
24	Artificial neuronal networks (ANN) to model the hydrolysis of goat milk protein by subtilisin and trypsin. Journal of Dairy Research, 2018, 85, 339-346.	0.7	12
25	Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: effect of enzymatic treatment and degree of hydrolysis. Journal of the Science of Food and Agriculture, 2017, 97, 299-308.	1.7	48
26	Development of an up-grading process to produce MLM structured lipids from sardine discards. Food Chemistry, 2017, 228, 634-642.	4.2	29
27	A Simple Enzymatic Process to Produce Functional Lipids From Vegetable and Fish Oil Mixtures. European Journal of Lipid Science and Technology, 2017, 119, 1700233.	1.0	5
28	Changes in structure and performance during diafiltration of binary protein solutions due to repeated cycles of fouling/alkaline cleaning. Food and Bioproducts Processing, 2017, 105, 117-128.	1.8	0
29	Multiobjective optimization of the antioxidant activities of horse mackerel hydrolysates produced with protease mixtures. Process Biochemistry, 2017, 52, 149-158.	1.8	17
30	Multiobjective optimization of a pilot plant to process fish discards and by-products on board. Clean Technologies and Environmental Policy, 2016, 18, 935-948.	2.1	5
31	Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. Journal of Food Engineering, 2016, 183, 39-49.	2.7	110
32	Mass transfer modeling of sardine oil polyunsaturated fatty acid (PUFA) concentration by low temperature crystallization. Journal of Food Engineering, 2016, 183, 16-23.	2.7	16
33	Modelling of the production of ACE inhibitory hydrolysates of horse mackerel using proteases mixtures. Food and Function, 2016, 7, 3890-3901.	2.1	13
34	Production and characterization of ice cream with high content in oleic and linoleic fatty acids. European Journal of Lipid Science and Technology, 2016, 118, 1846-1852.	1.0	5
35	Nutritional indexes, fatty acids profile, and regiodistribution of oil extracted from four discarded species of the Alboran Sea: Seasonal effects. European Journal of Lipid Science and Technology, 2016, 118, 1409-1415.	1.0	14
36	Artificial neural networks to model the production of blood protein hydrolysates for plant fertilisation. Journal of the Science of Food and Agriculture, 2016, 96, 207-214.	1.7	5

#	Article	IF	CITATIONS
37	Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry, 2016, 203, 124-135.	4.2	92
38	Effect of digestive enzymes on the bioactive properties of goat milk protein hydrolysates. International Dairy Journal, 2016, 54, 21-28.	1.5	21
39	Artificial neuronal network modeling of the enzymatic hydrolysis of horse mackerel protein using protease mixtures. Biochemical Engineering Journal, 2016, 105, 364-370.	1.8	11
40	Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry, 2016, 194, 1208-1216.	4.2	120
41	Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 2015, 133, 152-160.	3.7	118
42	Increasing the angiotensin converting enzyme inhibitory activity of goat milk hydrolysates by cross-flow filtration through ceramic membranes. Desalination and Water Treatment, 2015, 56, 3544-3553.	1.0	1
43	Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards. Journal of Functional Foods, 2015, 18, 95-105.	1.6	50
44	Modeling of Water Sorption Isotherms Characteristics of Spray-Dried Cherimoya (Annona cherimola) Purée. Particulate Science and Technology, 2015, 33, 264-272.	1.1	1
45	Seasonal variations in the regiodistribution of oil extracted from small-spotted catshark and bogue. Food and Function, 2015, 6, 2646-2652.	2.1	9
46	Optimization of α-tocopherol and ascorbyl palmitate addition for the stabilization of sardine oil. Grasas Y Aceites, 2015, 66, e069.	0.3	5
47	Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea. Food and Function, 2015, 6, 1261-1267.	2.1	19
48	Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of <scp>TLR</scp> 4. Molecular Nutrition and Food Research, 2014, 58, 1098-1110.	1.5	90
49	Nondigestible oligosaccharides exert nonprebiotic effects on intestinal epithelial cells enhancing the immune response via activation of <scp>TLR</scp> 4â€ <scp>NF</scp> κ <scp>B</scp> . Molecular Nutrition and Food Research, 2014, 58, 384-393.	1.5	97
50	Production of goat milk protein hydrolysate enriched in ACE-inhibitory peptides by ultrafiltration. Journal of Dairy Research, 2014, 81, 385-393.	0.7	11
51	Spray Drying of Goat Milk Protein Hydrolysates with Angiotensin Converting Enzyme Inhibitory Activity. Food and Bioprocess Technology, 2014, 7, 2388-2396.	2.6	6
52	Production of resistant starch by enzymatic debranching in legume flours. Carbohydrate Polymers, 2014, 101, 1176-1183.	5.1	30
53	Optimization of biodiesel production from waste fish oil. Renewable Energy, 2014, 68, 618-624.	4.3	75
54	Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International, 2014, 65, 469-476.	2.9	99

4

#	Article	IF	CITATIONS
55	Optimisation of oil extraction from sardine (<i><scp>S</scp>ardina pilchardus</i>) by hydraulic pressing. International Journal of Food Science and Technology, 2014, 49, 2167-2175.	1.3	16
56	Optimization of bleaching conditions for sardine oil. Journal of Food Engineering, 2013, 116, 606-612.	2.7	26
57	Influence of the parameters of the Rancimat test on the determination of the oxidative stability index of cod liver oil. LWT - Food Science and Technology, 2013, 51, 303-308.	2.5	25
58	Discarded species in the west Mediterranean sea as sources of omegaâ€3 <scp>PUFA</scp> . European Journal of Lipid Science and Technology, 2013, 115, 982-989.	1.0	27
59	Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions. International Dairy Journal, 2013, 32, 175-183.	1.5	55
60	Lipid characterization and properties of protein hydrolysates obtained from discarded Mediterranean fish species. Journal of the Science of Food and Agriculture, 2013, 93, 3777-3784.	1.7	21
61	Optimisation of the hydrolysis of goat milk protein for the production of ACE-inhibitory peptides. Journal of Dairy Research, 2013, 80, 214-222.	0.7	12
62	Processing fish press waters using metallic and ceramic filtration. Journal of Chemical Technology and Biotechnology, 2013, 88, 1885-1890.	1.6	2
63	Response Surface Modeling of the Multiphase Juice Composition from the Compaction of Sardine Discards. Food and Bioprocess Technology, 2012, 5, 2172-2182.	2.6	5
64	Operation and cleaning of ceramic membranes for the filtration of fish press liquor. Journal of Membrane Science, 2011, 384, 142-148.	4.1	25
65	Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein. Biochemical Engineering Journal, 2011, 53, 305-310.	1.8	32
66	Optimal operation of a protein hydrolysis reactor with enzyme recycle. Journal of Food Engineering, 2010, 97, 24-30.	2.7	13
67	Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks. Desalination, 2010, 250, 1118-1120.	4.0	33
68	Recent Patents on Ceramic Membranes Applications. Recent Patents on Chemical Engineering, 2010, 3, 38-48.	0.5	1
69	Recent Patents on Whey Protein Hydrolysates Manufactured by Proteolysis Coupled to Membrane Ultrafiltration. Recent Patents on Chemical Engineering, 2010, 3, 115-128.	0.5	2
70	Recent Patents on the Upgrading of Fish by-Products. Recent Patents on Chemical Engineering, 2010, 3, 149-162.	0.5	2
71	DENSITY, VISCOSITY AND SURFACE TENSION OF WHEY PROTEIN CONCENTRATE SOLUTIONS. Journal of Food Process Engineering, 2009, 32, 235-247.	1.5	24
72	Bovine glycomacropeptide induces cytokine production in human monocytes through the stimulation of the MAPK and the NFâ€̂₽B signal transduction pathways. British Journal of Pharmacology, 2009, 157, 1232-1240.	2.7	54

#	Article	IF	CITATIONS
73	Optimisation of liquor yield during the hydraulic pressing of sardine (Sardina pilchardus) discards. Journal of Food Engineering, 2009, 93, 66-71.	2.7	14
74	Analysis of cleaning protocols in ceramic membranes by liquid–liquid displacement porosimetry. Desalination, 2009, 245, 541-545.	4.0	12
75	Influence of the cleaning temperature on the permeability of ceramic membranes. Desalination, 2009, 245, 708-713.	4.0	27
76	Obtention of goat milk permeates enriched in lactose-derived oligosaccharides. Desalination, 2009, 245, 730-736.	4.0	15
77	A flux enhancing pretreatment for the ultrafiltration of acid whey. Desalination, 2009, 245, 737-742.	4.0	10
78	A combined fouling model to describe the influence of the electrostatic environment on the cross-flow microfiltration of BSA. Journal of Membrane Science, 2008, 318, 247-254.	4.1	33
79	Influence of temperature on protein hydrolysis in a cyclic batch enzyme membrane reactor. Biochemical Engineering Journal, 2008, 42, 217-223.	1.8	23
80	Influence of transmembrane pressure on the separation of caprine milk oligosaccharides from protein by crossâ€flow ultrafiltration. International Journal of Dairy Technology, 2008, 61, 333-339.	1.3	12
81	Influence of pH and salt concentration on the cross-flow microfiltration of BSA through a ceramic membrane. Biochemical Engineering Journal, 2007, 33, 110-115.	1.8	31
82	Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. Journal of Membrane Science, 2007, 288, 28-35.	4.1	94
83	A cyclic batch membrane reactor for the hydrolysis of whey protein. Journal of Food Engineering, 2007, 78, 257-265.	2.7	33
84	Dynamics of the ceramic ultrafiltration of model proteins with different isoelectric point: Comparison of β-lactoglobulin and lysozyme. Separation and Purification Technology, 2007, 57, 314-320.	3.9	13
85	Goats' milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology. International Dairy Journal, 2006, 16, 173-181.	1.5	180
86	Goat Milk Oligosaccharides Are Anti-Inflammatory in Rats with Hapten-Induced Colitis. Journal of Nutrition, 2006, 136, 672-676.	1.3	109
87	Long-term effects of chemical cleaning in the performance of ultrafiltration ceramic membranes. Desalination, 2006, 200, 316-318.	4.0	5
88	Influence of pH in the recovery of lactoferrin from whey with ceramic membranes. Desalination, 2006, 200, 475-476.	4.0	7
89	Recovery of caprine milk oligosaccharides with ceramic membranes. Journal of Membrane Science, 2006, 276, 23-30.	4.1	51
90	Production of whey protein hydrolysates with reduced allergenicity in a stable membrane reactor. Journal of Food Engineering, 2006, 72, 398-405.	2.7	77

#	Article	IF	CITATIONS
91	Optimal design and operation of continuous ultrafiltration plants. Journal of Membrane Science, 2004, 235, 131-138.	4.1	38
92	Optimal design and operation of batch ultrafiltration systems. Computer Aided Chemical Engineering, 2003, 14, 149-154.	0.3	0
93	Correlation of base consumption with the degree of hydrolysis in enzymic protein hydrolysis. Journal of Dairy Research, 2001, 68, 251-265.	0.7	34
94	Influence of enzymes, pH and temperature on the kinetics of whey protein hydrolysis / Influencia de los enzimas, pH y temperatura en la cinética de la hidrólisis de las proteÃnas del lactosuero. Food Science and Technology International, 1998, 4, 79-84.	1.1	12
95	A Simple Method for Obtaining Kinetic Equations to Describe the Enzymatic Hydrolysis of Biopolymers. Journal of Chemical Technology and Biotechnology, 1996, 67, 286-290.	1.6	8
96	Serum Amino Acid Concentrations in Growing Rats Fed Intact Protein versus Enzymatic Protein Hydrolysate-Based Diets. Neonatology, 1995, 68, 55-61.	0.9	11
97	Enzymatic hydrolysis of whey proteins: I. Kinetic models. Biotechnology and Bioengineering, 1994, 44, 523-528.	1.7	94
98	Enzymatic hydrolysis of whey proteins. II. Molecular-weight range. Biotechnology and Bioengineering, 1994, 44, 529-532.	1.7	62