Jm Vega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410653/publications.pdf

Version: 2024-02-01

567281 642732 25 808 15 23 citations h-index g-index papers 25 25 25 816 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Corrosion Mechanism of Microporous Nickel-Chromium Coatings: Part I. Impact of Cupric Ions on Nickel Layers. Journal of the Electrochemical Society, 2022, 169, 021503.	2.9	1
2	Corrosion Mechanism of Microporous Nickel-Chromium Coatings: Part II. SECM Study Monitoring Cu ²⁺ and Oxygen Reduction. Journal of the Electrochemical Society, 2022, 169, 021509.	2.9	0
3	Assessing the Effect of CeO2 Nanoparticles as Corrosion Inhibitor in Hybrid Biobased Waterborne Acrylic Direct to Metal Coating Binders. Polymers, 2021, 13, 848.	4.5	16
4	Impact of the in-situ phosphatization on the corrosion resistance of steel coated with fluorinated waterborne binders assessed by SKP and EIS. Progress in Organic Coatings, 2020, 148, 105706.	3.9	9
5	In-situ phosphatization and enhanced corrosion properties of films made of phosphate functionalized nanoparticles. Reactive and Functional Polymers, 2019, 143, 104334.	4.1	25
6	Combined Effect of Crystalline Nanodomains and <i>in Situ</i> Phosphatization on the Anticorrosion Properties of Waterborne Composite Latex Films. Industrial & Engineering Chemistry Research, 2019, 58, 21022-21030.	3.7	15
7	AN SKP and EIS study of microporous nickel-chromium coatings in copper containing electrolytes. Electrochimica Acta, 2019, 318, 683-694.	5.2	15
8	Tribocorrosion study of Ni/B electrodeposits with low B content. Surface and Coatings Technology, 2019, 369, 1-15.	4.8	10
9	Effect of Mo addition on corrosion of Zn coatings electrodeposited on steel. Corrosion Science, 2018, 135, 107-119.	6.6	26
10	Effective incorporation of ZnO nanoparticles by miniemulsion polymerization in waterborne binders for steel corrosion protection. Journal of Coatings Technology Research, 2017, 14, 829-839.	2.5	15
11	Exploring the corrosion inhibition of aluminium by coatings formulated with calcium exchange bentonite. Progress in Organic Coatings, 2017, 111, 273-282.	3.9	11
12	Effect of different post-treatments on the corrosion resistance and tribological properties of AZ91D magnesium alloy coated PEO. Surface and Coatings Technology, 2015, 278, 99-107.	4.8	68
13	On the role of free carboxylic groups and cluster conformation on the surface scratch healing behaviour of ionomers. European Polymer Journal, 2014, 57, 121-126.	5.4	51
14	Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity. Corrosion Science, 2013, 76, 348-360.	6.6	153
15	Corrosion inhibition of aluminum by organic coatings formulated with calcium exchange silica pigment. Journal of Coatings Technology Research, 2013, 10, 209-217.	2.5	12
16	lon-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: Anion-exchange pigments. Progress in Organic Coatings, 2013, 76, 411-424.	3.9	26
17	Mapping air pollution effects on atmospheric degradation of cultural heritage. Journal of Cultural Heritage, 2013, 14, 138-145.	3.3	44
18	lon-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: Cation-exchange pigments. Progress in Organic Coatings, 2012, 75, 147-161.	3.9	28

#	Article	IF	CITATION
19	Corrosion inhibition of aluminum by coatings formulated with Al–Zn–vanadate hydrotalcite. Progress in Organic Coatings, 2011, 70, 213-219.	3.9	59
20	Paint systems formulated with ion-exchange pigments applied on carbon steel: Effect of surface preparation. Progress in Organic Coatings, 2011, 70, 394-400.	3.9	19
21	City scale assessment model for air pollution effects on the cultural heritage. Atmospheric Environment, 2011, 45, 1242-1250.	4.1	54
22	Corrosion resistance of new epoxy–siloxane hybrid coatings. A laboratory study. Progress in Organic Coatings, 2010, 69, 278-286.	3.9	71
23	Mapas de España de corrosividad del zinc en atmósferas rurales. Revista De Metalurgia, 2010, 46, 485-492.	0.5	13
24	Anticorrosive behaviour of alkyd paints formulated with ion-exchange pigments. Progress in Organic Coatings, 2008, 61, 283-290.	3.9	65
25	Unravelling the Fe Effect on the Corrosion of Chromium Coatings: Chemical Composition and Semiconducting Properties. Journal of the Electrochemical Society, 0, , .	2.9	2