
José F RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the Complete Nucleotide Sequence of African Swine Fever Virus. Virology, 1995, 208, 249-278.	2.4	419
2	IPTG-dependent vaccinia virus: identification of a virus protein enabling virion envelopment by Golgi membrane and egress. Nucleic Acids Research, 1990, 18, 5347-5351.	14.5	153
3	VP5, the Nonstructural Polypeptide of Infectious Bursal Disease Virus, Accumulates within the Host Plasma Membrane and Induces Cell Lysis. Virology, 2000, 277, 345-357.	2.4	115
4	Infectious bursal disease virus is an icosahedral polyploid dsRNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2148-2152.	7.1	110
5	Inducible gene expression from vaccinia virus vectors. Virology, 1990, 177, 239-250.	2.4	97
6	Proteolytic Processing in Infectious Bursal Disease Virus: Identification of the Polyprotein Cleavage Sites by Site-Directed Mutagenesis. Virology, 1999, 262, 190-199.	2.4	94
7	The African Swine Fever Virus IAP Homolog Is a Late Structural Polypeptide. Virology, 1995, 214, 670-674.	2.4	80
8	Activation mechanism of a noncanonical RNA-dependent RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20540-20545.	7.1	80
9	Infectious Bursal Disease Virus: Ribonucleoprotein Complexes of a Double-Stranded RNA Virus. Journal of Molecular Biology, 2009, 386, 891-901.	4.2	78
10	The Oligomerization Domain of VP3, the Scaffolding Protein of Infectious Bursal Disease Virus, Plays a Critical Role in Capsid Assembly. Journal of Virology, 2003, 77, 6438-6449.	3.4	69
11	A 14K envelope protein of vaccinia virus with an important role in virus-host cell interactions is altered during virus persistence and determines the plaque size phenotype of the virus. Virology, 1987, 159, 423-432.	2.4	64
12	Structural Polymorphism of the Major Capsid Protein of a Double-Stranded RNA Virus: An Amphipathic α Helix as a Molecular Switch. Structure, 2005, 13, 1007-1017.	3.3	63
13	The 2.6-Angstrom Structure of Infectious Bursal Disease Virus-Derived T=1 Particles Reveals New Stabilizing Elements of the Virus Capsid. Journal of Virology, 2006, 80, 6895-6905.	3.4	60
14	Genetic manipulation of African swine fever virus: Construction of recombinant viruses expressing the β-galactosidase gene. Virology, 1992, 188, 67-76.	2.4	52
15	The capsid protein of infectious bursal disease virus contains a functional α4β1 integrin ligand motif. Virology, 2009, 386, 360-372.	2.4	49
16	The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus. Virology, 2004, 322, 135-142.	2.4	46
17	Infectious Bursal Disease Virus Capsid Assembly and Maturation by Structural Rearrangements of a Transient Molecular Switch. Journal of Virology, 2007, 81, 6869-6878.	3.4	45
18	Autoproteolytic Activity Derived from the Infectious Bursal Disease Virus Capsid Protein. Journal of Biological Chemistry, 2009, 284, 8064-8072.	3.4	40

José F RodrÃguez

#	Article	IF	CITATIONS
19	Structural Insights into the Multifunctional Protein VP3 of Birnaviruses. Structure, 2008, 16, 29-37.	3.3	37
20	Different Architectures in the Assembly of Infectious Bursal Disease Virus Capsid Proteins Expressed in Insect Cells. Virology, 2000, 278, 322-331.	2.4	36
21	Mechanical Stability and Reversible Fracture of Vault Particles. Biophysical Journal, 2014, 106, 687-695.	0.5	36
22	The Endosomal Pathway and the Golgi Complex Are Involved in the Infectious Bursal Disease Virus Life Cycle. Journal of Virology, 2013, 87, 8993-9007.	3.4	35
23	The Infectious Bursal Disease Virus RNA-Binding VP3 Polypeptide Inhibits PKR-Mediated Apoptosis. PLoS ONE, 2012, 7, e46768.	2.5	32
24	Non-Lytic Egression of Infectious Bursal Disease Virus (IBDV) Particles from Infected Cells. PLoS ONE, 2017, 12, e0170080.	2.5	32
25	Infectious Bursal Disease Virus VP3 Upregulates VP1-Mediated RNA-Dependent RNA Replication. Journal of Virology, 2015, 89, 11165-11168.	3.4	27
26	The Structure of the RNA-Dependent RNA Polymerase of a Permutotetravirus Suggests a Link between Primer-Dependent and Primer-Independent Polymerases. PLoS Pathogens, 2015, 11, e1005265.	4.7	25
27	Infectious Bursal Disease Virus VP5 Polypeptide: A Phosphoinositide-Binding Protein Required for Efficient Cell-to-Cell Virus Dissemination. PLoS ONE, 2015, 10, e0123470.	2.5	24
28	Electrostatic Interactions between Capsid and Scaffolding Proteins Mediate the Structural Polymorphism of a Double-stranded RNA Virus. Journal of Biological Chemistry, 2010, 285, 3643-3650.	3.4	23
29	Technical Advance: Surface plasmon resonance-based analysis of CXCL12 binding using immobilized lentiviral particles. Journal of Leukocyte Biology, 2011, 90, 399-408.	3.3	23
30	Rescue of Infectious Birnavirus from Recombinant Ribonucleoprotein Complexes. PLoS ONE, 2014, 9, e87790.	2.5	22
31	Host Proteolytic Activity Is Necessary for Infectious Bursal Disease Virus Capsid Protein Assembly. Journal of Biological Chemistry, 2012, 287, 24473-24482.	3.4	20
32	Infectious bursal disease virus persistently infects bursal B-lymphoid DT40 cells. Journal of General Virology, 2009, 90, 1148-1152.	2.9	17
33	Exacerbated Apoptosis of Cells Infected with Infectious Bursal Disease Virus upon Exposure to Interferon Alpha. Journal of Virology, 2018, 92, .	3.4	15
34	Triatoma virus structural polyprotein expression, processing and assembly into virus-like particles. Journal of General Virology, 2015, 96, 64-73.	2.9	9
35	Aquabirnavirus polyploidy: a new strategy to modulate virulence?. Journal of General Virology, 2016, 97, 1168-1177.	2.9	9
36	Type I Interferon Acts as a Major Barrier to the Establishment of Persistent Infectious Bursal Disease Virus Infections. Journal of Virology, 2021, 95, .	3.4	8

#	Article	IF	CITATIONS
37	Purification, crystallization and preliminary X-ray diffraction analysis of the RNA-dependent RNA polymerase fromThosea asignavirus. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1263-1266.	0.7	3
38	Activation of the autophagy pathway by Torovirus infection is irrelevant for virus replication. PLoS ONE, 2019, 14, e0219428.	2.5	3
39	Structure and Double-Stranded RNA-Binding Activity of the Birnavirus Drosophila X Virus VP3 Protein. Journal of Virology, 2021, 95, .	3.4	2