
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new submerged photocatalytic membrane reactor based on membrane distillation for ketoprofen removal from various aqueous matrices. Chemical Engineering Journal, 2022, 435, 134872.	12.7	11
2	Treatment of laundry wastewater by solar photo-Fenton process at pilot plant scale. Environmental Science and Pollution Research, 2021, 28, 8576-8584.	5.3	12
3	Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Separation and Purification Technology, 2021, 256, 117827.	7.9	34
4	C-,N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts, 2021, 11, 144.	3.5	148
5	Influence of Polymer Solvents on the Properties of Halloysite-Modified Polyethersulfone Membranes Prepared by Wet Phase Inversion. Molecules, 2021, 26, 2768.	3.8	5
6	Effect of Calcination Conditions on the Properties and Photoactivity of TiO2 Modified with Biuret. Catalysts, 2021, 11, 1546.	3.5	2
7	Novel polyethersulfone ultrafiltration membranes modified with Cu/titanate nanotubes. Journal of Water Process Engineering, 2020, 33, 101098.	5.6	12
8	Effect of copper salts on the characteristics and antibacterial activity of Cu-modified titanate nanotubes. Journal of Environmental Chemical Engineering, 2020, 8, 104550.	6.7	9
9	Editorial Catalysts: Special Issue on Photocatalytic Membrane Reactors. Catalysts, 2020, 10, 962.	3.5	1
10	Hybrid System Coupling Moving Bed Bioreactor with UV/O3 Oxidation and Membrane Separation Units for Treatment of Industrial Laundry Wastewater. Materials, 2020, 13, 2648.	2.9	7
11	Photocatalytic membrane reactors for wastewater treatment. , 2020, , 83-116.		7
12	Influence of Preparation Procedure on Physicochemical and Antibacterial Properties of Titanate Nanotubes Modified with Silver. Nanomaterials, 2019, 9, 795.	4.1	21
13	Investigations on the Properties and Performance of Mixed-Matrix Polyethersulfone Membranes Modified with Halloysite Nanotubes. Polymers, 2019, 11, 671.	4.5	22
14	Influence of Ag/titanate nanotubes on physicochemical, antifouling and antimicrobial properties of mixedâ€matrix polyethersulfone ultrafiltration membranes. Journal of Chemical Technology and Biotechnology, 2019, 94, 2497-2511.	3.2	14
15	Overview of Photocatalytic Membrane Reactors in Organic Synthesis, Energy Storage and Environmental Applications. Catalysts, 2019, 9, 239.	3.5	57
16	Performance of hybrid systems coupling advanced oxidation processes and ultrafiltration for oxytetracycline removal. Catalysis Today, 2019, 328, 274-280.	4.4	31
17	The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment. Science of the Total Environment, 2018, 627, 1638-1643.	8.0	48
18	Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid UV/H2O2 – ultrafiltration system. Chemical Engineering and Processing: Process Intensification, 2018, 125, 318-324.	3.6	47

#	Article	IF	CITATIONS
19	PMRs Utilizing Pressure-Driven Membrane Techniques. , 2018, , 97-127.		1
20	Adsorption of carbon dioxide on TEPA-modified TiO ₂ /titanate composite nanorods. New Journal of Chemistry, 2017, 41, 7870-7885.	2.8	16
21	The influence of feed composition on fouling and stability of a polyethersulfone ultrafiltration membrane in a photocatalytic membrane reactor. Chemical Engineering Journal, 2017, 310, 360-367.	12.7	42
22	Comparison of UV/H 2 O 2 , UV/S 2 O 8 2â^' , solar/Fe(II)/H 2 O 2 and solar/Fe(II)/S 2 O 8 2â^' at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chemical Engineering Journal, 2017, 310, 514-524.	12.7	67
23	The use of moving bed bio-reactor to laundry wastewater treatment. E3S Web of Conferences, 2017, 22, 00015.	0.5	4
24	TiO 2 /titanate composite nanorod obtained from various alkali solutions as CO 2 sorbents from exhaust gases. Microporous and Mesoporous Materials, 2016, 231, 117-127.	4.4	17
25	Temperature study of magnetic resonance spectra of co-modified (Co,N)-TiO2 nanocomposites. Materials Science-Poland, 2016, 34, 242-250.	1.0	3
26	A system coupling hybrid biological method with UV/O3 oxidation and membrane separation for treatment and reuse of industrial laundry wastewater. Environmental Science and Pollution Research, 2016, 23, 19145-19155.	5.3	43
27	Magnetic Properties of Cobalt and Nitrogen Co-modified Titanium Dioxide Nanocomposites. NATO Science for Peace and Security Series A: Chemistry and Biology, 2016, , 109-125.	0.5	3
28	Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane. Chemical Engineering Journal, 2016, 305, 19-27.	12.7	71
29	Magnetic resonance study of co-modified (Co,N)-TiO ₂ nanocomposites. Nukleonika, 2015, 60, 411-416.	0.8	6
30	Magnetic properties of co-modified Fe,N-TiO2 nanocomposites. Open Physics, 2015, 13, .	1.7	1
31	Effect of process parameters on fouling and stability of MF/UF TiO2 membranes in a photocatalytic membrane reactor. Separation and Purification Technology, 2015, 142, 137-148.	7.9	45
32	A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic membrane reactor. Journal of Membrane Science, 2015, 495, 176-186.	8.2	43
33	Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Microporous and Mesoporous Materials, 2015, 202, 241-249.	4.4	25
34	Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Applied Catalysis B: Environmental, 2015, 162, 310-318.	20.2	57
35	Formation of Combustible Hydrocarbons and H2 during Photocatalytic Decomposition of Various Organic Compounds under Aerated and Deaerated Conditions. Molecules, 2014, 19, 19633-19647.	3.8	13
36	TiO ₂ Supported on Quartz Wool for Photocatalytic Oxidation of Hydrogen Sulphide. Adsorption Science and Technology, 2014, 32, 765-773.	3.2	10

#	Article	IF	CITATIONS
37	Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents. Catalysis Today, 2014, 236, 135-145.	4.4	48
38	Removal of nonâ€steroidal antiâ€inflammatory drugs from primary and secondary effluents in a photocatalytic membrane reactor. Journal of Chemical Technology and Biotechnology, 2014, 89, 1265-1273.	3.2	42
39	Preparation, characterization and charge transfer studies of nickel – modified and nickel, nitrogen co-modified rutile titanium dioxide for photocatalytic application. Chemical Engineering Journal, 2014, 239, 149-157.	12.7	20
40	Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. Journal of Membrane Science, 2014, 470, 356-368.	8.2	41
41	Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization, 2014, 5, 47-52.	6.8	73
42	Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1–C3 hydrocarbons and hydrogen. Applied Catalysis B: Environmental, 2013, 140-141, 108-114.	20.2	65
43	Nitrogen, iron-single modified (N-TiO2, Fe-TiO2) and co-modified (Fe,N-TiO2) rutile titanium dioxide as visible-light active photocatalysts. Chemical Engineering Journal, 2013, 225, 358-364.	12.7	65
44	Photocatalytic membrane reactors: fundamentals, membrane materials and operational issues. , 2013, , 236-295.		7
45	Photocatalytic membrane reactors: configurations, performance and applications in water treatment and chemical production. , 2013, , 808-845.		7
46	Evaluation of Performance of Hybrid Photolysis-DCMD and Photocatalysis-DCMD Systems Utilizing UV-C Radiation for Removal of Diclofenac Sodium Salt From Water. Polish Journal of Chemical Technology, 2013, 15, 51-60.	0.5	21
47	Adsorption of humic acid on mesoporous carbons prepared from poly- (ethylene terephthalate) templated with magnesium compounds. Polish Journal of Chemical Technology, 2012, 14, 95-99.	0.5	7
48	Carbon Materials in Photocatalysis. Chemistry and Physics of Carbon: A Series of Advances, 2012, , 171-268.	0.3	3
49	The performance of a hybrid photocatalysis–MD system for the treatment of tap water contaminated with ibuprofen. Catalysis Today, 2012, 193, 213-220.	4.4	45
50	Immobilized TiO ₂ for Phenol Degradation in a Pilot-Scale Photocatalytic Reactor. Journal of Nanomaterials, 2012, 2012, 1-10.	2.7	27
51	The Influence of Solution Composition on the Effectiveness of Degradation of Ibuprofen Sodium Salt in a Hybrid Photocatalysis – Membrane Distillation System. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	2
52	Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chemical Engineering Journal, 2012, 191, 147-153.	12.7	26
53	A novel suspended/supported photoreactor design for photocatalytic decomposition of acetic acid with simultaneous production of useful hydrocarbons. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 236, 48-53.	3.9	16
54	Decomposition of 3-chlorophenol on nitrogen modified TiO2 photocatalysts. Journal of Hazardous Materials, 2012, 203-204, 128-136.	12.4	24

#	Article	IF	CITATIONS
55	Degradation of Ibuprofen Sodium Salt in a Hybrid Photolysis – Membrane Distillation System Utilizing Germicidal UVC Lamp. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	2
56	Photocatalytic acetic acid decomposition leading to the production of hydrocarbons and hydrogen on Fe-modified TiO2. Catalysis Today, 2011, 161, 189-195.	4.4	28
57	Photocatalytic generation of useful hydrocarbons and hydrogen from acetic acid in the presence of lanthanide modified TiO2. International Journal of Hydrogen Energy, 2011, 36, 6529-6537.	7.1	45
58	The influence of physico-chemical properties of TiO2 on photocatalytic generation of C1–C3 hydrocarbons and hydrogen from aqueous solution of acetic acid. Applied Catalysis B: Environmental, 2011, 104, 21-29.	20.2	32
59	Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and Purification Technology, 2010, 73, 71-91.	7.9	494
60	Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method. Journal of Physics and Chemistry of Solids, 2010, 71, 263-272.	4.0	89
61	Preparation of Fe-modified photocatalysts and their application for generation of useful hydrocarbons during photocatalytic decomposition of acetic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 275-282.	3.9	25
62	Application of temperature modified titanate nanotubes for removal of an azo dye from water in a hybrid photocatalysis-MD process. Catalysis Today, 2010, 156, 198-207.	4.4	36
63	Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Catalysis Today, 2010, 156, 295-300.	4.4	44
64	Integration of photocatalysis and membrane distillation for removal of mono- and poly-azo dyes from water. Desalination, 2010, 250, 666-672.	8.2	49
65	Generation of Useful Hydrocarbons and Hydrogen during Photocatalytic Decomposition of Acetic Acid on CuO/Rutile Photocatalysts. International Journal of Photoenergy, 2009, 2009, 1-8.	2.5	11
66	Effect of process parameters on photodegradation of Acid Yellow 36 in a hybrid photocatalysis–membrane distillation system. Chemical Engineering Journal, 2009, 150, 152-159.	12.7	70
67	Preparation of carbon-coated Magneli phases TinO2nâ^'1 and their photocatalytic activity under visible light. Applied Catalysis B: Environmental, 2009, 88, 160-164.	20.2	99
68	Application of anatase-phase TiO2 for decomposition of azo dye in a photocatalytic membrane reactor. Desalination, 2009, 241, 97-105.	8.2	57
69	Integration of Photocatalysis with Ultrafiltration or Membrane Distillation for Removal of Azo Dye Direct Green 99 from Water. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	2
70	Effectiveness of photodecomposition of an azo dye on a novel anatase-phase TiO2 and two commercial photocatalysts in a photocatalytic membrane reactor (PMR). Separation and Purification Technology, 2008, 63, 386-391.	7.9	41
71	Effect of calcination temperature on photocatalytic activity of TiO ₂ . Photodecomposition of mono- and polyazo dyes in water. Polish Journal of Chemical Technology, 2008, 10, 42-49.	0.5	9
72	Nanoporous carbons from cypress I. Preparation and pore structure. New Carbon Materials, 2007, 22, 199-205.	6.1	6

#	Article	IF	CITATIONS
73	Nanoporous carbons from cypress II. Application to electric double layer capacitors. New Carbon Materials, 2007, 22, 321-326.	6.1	26
74	Comparison of effectiveness of methylene blue decomposition using pristine and carbon-coated TiO2 in a photocatalytic membrane reactor. Desalination, 2007, 212, 141-151.	8.2	33
75	Photodegradation of azo dye Acid Red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed. Dyes and Pigments, 2007, 75, 60-66.	3.7	49
76	Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—Effectiveness of removal of three azo dyes from water. Catalysis Today, 2007, 129, 3-8.	4.4	79
77	Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor. Journal of Hazardous Materials, 2007, 140, 369-375.	12.4	64
78	Removal of azo-dye Acid Red 18 in two hybrid membrane systems employing a photodegradation process. Desalination, 2006, 198, 183-190.	8.2	41
79	Application of an ozonation–adsorption–ultrafiltration system for surface water treatment. Desalination, 2006, 190, 308-314.	8.2	33
80	Hybridization of photocatalysis and membrane distillation for purification of wastewater. Catalysis Today, 2006, 118, 181-188.	4.4	45
81	The preparation of TiO2–nitrogen doped by calcination of TiO2•xH2O under ammonia atmosphere for visible light photocatalysis. Solar Energy Materials and Solar Cells, 2005, 88, 269-280.	6.2	120
82	Photocatalytic degradation of azo-dye Acid Red 18. Desalination, 2005, 185, 449-456.	8.2	102
83	Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental, 2005, 55, 195-200.	20.2	70
84	A new photocatalytic membrane reactor (PMR) for removal of azo-dye Acid Red 18 from water. Applied Catalysis B: Environmental, 2005, 59, 131-137.	20.2	92
85	Decomposition of nonionic surfactant in a labyrinth flow photoreactor with immobilized TiO2 bed. Applied Catalysis B: Environmental, 2005, 59, 155-160.	20.2	23
86	Studies on the effect of humic acids and phenol on adsorption–ultrafiltration process performance. Water Research, 2005, 39, 501-509.	11.3	62
87	Treatment of surface water using hybrid processes —adsorption on PAC and ultrafiltration. Desalination, 2004, 162, 23-31.	8.2	50
88	Removal of organic matter by coagulation enhanced with adsorption on PAC. Desalination, 2004, 161, 79-87.	8.2	107
89	Removal of organic matter from water by PAC/UF system. Water Research, 2002, 36, 4137-4143.	11.3	169
90	Influence of the procedure of casting solution preparation on the antimicrobial properties of		1

polyethersulfone membranes modified with titanate nanotubes. , 0, 214, 273-285.

#	Article	IF	CITATIONS
91	Investigations on ultrafiltration polyethersulfone membranes modified with titanate nanotubes of various characteristics. , 0, 214, 302-311.		1
92	On photocatalytic membrane reactors in water and wastewater treatment and organic synthesis. Copernican Letters, 0, 6, 17.	0.0	2
93	Possibilities of application of advanced oxidation - membrane separation system for treatment and reuse of laundry wastewater. , 0, 64, 218-222.		2
94	Surface water treatment in hybrid systems coupling advanced oxidation processes and ultrafiltration using ceramic membrane. , 0, 64, 302-306.		9
95	Application of MBR technology for laundry wastewater treatment. , 0, 64, 213-217.		6
96	Polyethersulfone ultrafiltration membranes modified with hybrid Ag/titanate nanotubes: physicochemical characteristics, antimicrobial properties and fouling resistance. , 0, 128, 106-118.		6
97	Removal of organic pollutants and surfactants from laundry wastewater in membrane bioreactor (MBR). , 0, 134, 281-288.		6
98	Influence of MgO nanoparticles on the physiochemical, transport and antimicrobial properties of polyethersulfone membranes. , 0, 128, 199-206.		0
99	Investigation on polyethersulfone membranes modified with Fe3O4 – trisodium citrate nanoparticles. , 0, 128, 265-271.		0
100	Influence of sodium dodecyl sulfate on the morphology and performance of titanate		5

^{.00} nanotubes/polyethersulfone mixed-matrix membranes., 0, 208, 287-302.