Ismail Rawat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410477/publications.pdf

Version: 2024-02-01

147566 243296 3,796 50 31 44 h-index citations g-index papers 50 50 50 3727 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 2013, 103, 444-467.	5.1	786
2	Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews, 2014, 29, 216-245.	8.2	241
3	Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 2016, 55, 1-16.	8.2	227
4	Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel, 2014, 128, 46-52.	3.4	190
5	Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 2015, 94, 22-29.	1.8	169
6	The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technology, 2014, 168, 127-135.	4.8	157
7	Dual role of Chlorella sorokiniana and Scenedesmus obliquus forÂcomprehensive wastewater treatment and biomass production forÂbio-fuels. Journal of Cleaner Production, 2016, 115, 255-264.	4.6	157
8	Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 2017, 203, 299-315.	3.8	132
9	Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews, 2017, 80, 765-773.	8.2	113
10	Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. Journal of Environmental Management, 2019, 240, 293-302.	3.8	104
11	Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst. Renewable Energy, 2017, 105, 175-182.	4.3	99
12	Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renewable Energy, 2016, 85, 1002-1010.	4.3	87
13	Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresource Technology, 2016, 219, 749-752.	4.8	81
14	Lipid extracted algae as a source for protein and reduced sugar: A step closer to the biorefinery. Bioresource Technology, 2015, 179, 559-564.	4.8	79
15	Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst. Chemical Engineering Research and Design, 2014, 92, 1503-1511.	2.7	74
16	Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress. Energy Conversion and Management, 2017, 140, 14-23.	4.4	74
17	Improving the feasibility of aquaculture feed by using microalgae. Environmental Science and Pollution Research, 2021, 28, 43234-43257.	2.7	69
18	Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: A sustainable approach for biodiesel production. Chemical Engineering Journal, 2014, 255, 327-333.	6.6	67

#	Article	IF	CITATIONS
19	Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel, 2015, 147, 117-124.	3.4	60
20	An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes. Algal Research, 2016, 19, 292-298.	2.4	58
21	Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from <i>Scenedesmus obliquus</i> . Industrial & Engineering Chemistry Research, 2017, 56, 3407-3412.	1.8	56
22	Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 2018, 182, 634-643.	4.6	55
23	Wastewater to biofuels: Comprehensive evaluation of various flocculants on biochemical composition and yield of microalgae. Ecological Engineering, 2018, 117, 62-68.	1.6	54
24	Combined metals and EDTA control: An integrated and scalable lipid enhancement strategy to alleviate biomass constraints in microalgae under nitrogen limited conditions. Energy Conversion and Management, 2016, 114, 100-109.	4.4	52
25	Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: A commercial-scale application. Science of the Total Environment, 2020, 704, 135259.	3.9	46
26	Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Conversion and Management, 2014, 85, 537-544.	4.4	41
27	Improving the feasibility of producing biofuels from microalgae using wastewater. Environmental Technology (United Kingdom), 2013, 34, 1765-1775.	1.2	39
28	Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes. Bioresource Technology, 2015, 176, 1-7.	4.8	39
29	Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition, 2021, 83, 111089.	1.1	39
30	Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresource Technology, 2014, 174, 60-66.	4.8	36
31	Sustainable dewatering and drying of self-flocculating microalgae and study of cake properties. Journal of Cleaner Production, 2017, 159, 248-256.	4.6	33
32	Cultivation of Chlorella sorokiniana and Scenedesmus obliquus in wastewater: Fuzzy intelligence for evaluation of growth parameters and metabolites extraction. Journal of Cleaner Production, 2017, 147, 419-430.	4.6	32
33	Artificial neural network and techno-economic estimation with algae-based tertiary wastewater treatment. Journal of Water Process Engineering, 2021, 40, 101761.	2.6	31
34	Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. Journal of Environmental Management, 2021, 297, 113257.	3.8	31
35	Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents. Renewable and Sustainable Energy Reviews, 2022, 156, 111973.	8.2	29
36	Microalgae Applications in Wastewater Treatment. Green Energy and Technology, 2016, , 249-268.	0.4	26

#	Article	IF	CITATIONS
37	Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. Environmental Science and Pollution Research, 2017, 24, 15299-15307.	2.7	25
38	A comparative study on biochemical methane potential of algal substrates: Implications of biomass pre-treatment and product extraction. Bioresource Technology, 2017, 234, 320-326.	4.8	17
39	Catalytic pyrolysis of nutrient-stressed Scenedesmus obliquus microalgae for high-quality bio-oil production. Renewable Energy, 2021, 179, 2036-2047.	4.3	16
40	Microalgae Isolation and Basic CulturingÂTechniques. , 2015, , 43-54.		15
41	Sustainable Production of Biofuels from Microalgae Using a Biorefinary Approach. , 2015, , 115-128.		15
42	A novel organic dye-based approach to increase photon flux density for enhanced microalgal pigment production. Journal of Cleaner Production, 2018, 198, 187-194.	4.6	14
43	Thermal Behavior and Pyrolytic Characteristics of Freshwater (i>Scenedesmus (i>sp. Biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 1383-1391.	1.2	11
44	Valorization of poultry litter using Acutodesmus obliquus and its integrated application for lipids and fertilizer production. Science of the Total Environment, 2021, 796, 149018.	3.9	8
45	Meeting sustainable development goals (SDGs) through progression of pilot-scale algal system to commercial raceway pond (300,000 L). Biomass Conversion and Biorefinery, 2023, 13, 7663-7676.	2.9	6
46	Carbon Dioxide Sequestration by Microalgae: Biorefinery Approach for Clean Energy and Environment., 2015,, 147-154.		2
47	Enhancing the efficiency of thermal conversion of microalgae: a review. Biomass Conversion and Biorefinery, 2023, 13, 8813-8827.	2.9	2
48	Phycoremediation by High-Rate Algal Ponds (HRAPs)., 2013,, 179-200.		1
49	Catalytic Conversion of Microalgal Lipids to Biodiesel: Overview and Recent Advances. , 2017, , 315-329.		1
50	Valorization of Wastewater via Nutrient Recovery Using Algae-Based Processes., 2021,, 1-26.		0