Chuang Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Harnessing Heteropolar Lithium Polysulfides by Amphoteric Polymer Binder for Facile Manufacturing of Practical Liâ€& Batteries. Small, 2022, 18, e2107109.	10.0	13
2	Synergistic Geometric and Electronic Effects in Bi–Cu Bimetallic Catalysts for CO ₂ Electroreduction to Formate over a Wide Potential Window. ACS Sustainable Chemistry and Engineering, 2022, 10, 5693-5701.	6.7	9
3	Electron transfer and energy barrier co-modulation: Unravelling the role of sequential fluorination in high-rate CO2 photoreduction on conjugated organic polymers. Applied Catalysis A: General, 2022, 638, 118618.	4.3	3
4	Self-assembled titanium-deficient undoped anatase TiO2 nanoflowers for ultralong-life and high-rate Li+/Na+ storage. Chemical Engineering Journal, 2022, 445, 136638.	12.7	12
5	Efficient high-rate aqueous alkaline battery with dual-ion intercalation chemistry enabled by asymmetric electrode polarization. Cell Reports Physical Science, 2022, 3, 100981.	5.6	1
6	Nitrogenâ€Doped Hierarchical Heterostructured Aerophobic MoS _x /Ni ₃ S ₂ Nanowires by Oneâ€pot Synthesis: System Engineering and Synergistic Effect in Electrocatalysis of Hydrogen Evolution Reaction. Energy and Environmental Materials, 2021, 4, 658-663.	12.8	24
7	A dual-cathode study on Ag-Cu sequential CO2 electroreduction towards hydrocarbons. Journal of CO2 Utilization, 2021, 45, 101444.	6.8	10
8	Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Applied Catalysis B: Environmental, 2021, 285, 119834.	20.2	71
9	Electrochemical Conversion of Silica Nanoparticles to Silicon Nanotubes in Molten Salts: Implications for High-Performance Lithium-Ion Battery Anode. ACS Applied Nano Materials, 2021, 4, 7028-7036.	5.0	19
10	ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. Journal of Hazardous Materials, 2021, 415, 125511.	12.4	149
11	Sustainable and feasible reagent-free electro-Fenton via sequential dual-cathode electrocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
12	Low-crystalline transition metal oxide/hydroxide on MWCNT by Fenton-reaction-inspired green synthesis for lithium ion battery and OER electrocatalysis. Electrochimica Acta, 2021, 387, 138559.	5.2	19
13	Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries. Chemical Engineering Journal, 2021, 419, 129494.	12.7	11
14	NiSe/Ni ₃ Se ₂ on nickel foam as an ultra-high-rate HER electrocatalyst: common anion heterostructure with built-in electric field and efficient interfacial charge transfer. RSC Advances, 2021, 11, 34432-34439.	3.6	8
15	Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors. Applied Surface Science, 2020, 507, 145190.	6.1	50
16	Electroplating of Thick Hard Chromium Coating from a Trivalent Chromium Bath Containing a Ternary Complexing Agent: A Methodological and Mechanistic Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 15540-15549.	6.7	15
17	Toward Commercially Viable Li-S Batteries: Overall Performance Improvements Enabled by a Multipurpose Interlayer of Hyperbranched Polymer-Grafted Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 25767-25774.	8.0	23
18	The role of titanium-deficient anatase TiO2 interlayers in boosting lithium–sulfur battery performance: polysulfide trapping, catalysis and enhanced lithium ion transport. Nanoscale, 2020, 12, 4645-4654.	5.6	43

CHUANG PENG

#	Article	IF	CITATIONS
19	Nanocarbon-based catalysts for esterification: Effect of carbon dimensionality and synergistic effect of the surface functional groups. Carbon, 2019, 147, 134-145.	10.3	19
20	Assessment of toxicity reduction in ZnS substituted CdS:P3HT bulk heterojunction solar cells fabricated using a single-source precursor deposition. Sustainable Energy and Fuels, 2019, 3, 948-955.	4.9	4
21	Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Advances, 2019, 9, 10976-10982.	3.6	36
22	Biomassâ€Đerived Materials for Electrochemical Energy Storage and Conversion: Overview and Perspectives. Energy and Environmental Materials, 2019, 2, 55-67.	12.8	101
23	Optimal Utilization of Combined Double Layer and Nernstian Charging of Activated Carbon Electrodes in Aqueous Halide Supercapattery through Capacitance Unequalization. Journal of the Electrochemical Society, 2018, 165, A4067-A4076.	2.9	27
24	Influence of acid and alkali pre-treatments on thermal degradation behaviour of polyisocyanurate foam and its carbon morphology. Polymer Degradation and Stability, 2017, 141, 104-118.	5.8	5
25	Highly Efficient Sulfonic/Carboxylic Dualâ€Acid Synergistic Catalysis for Esterification Enabled by Sulfurâ€Rich Graphene Oxide. ChemSusChem, 2017, 10, 3352-3357.	6.8	21
26	Interfacial Synthesis of Free-Standing Asymmetrical PPY-PEDOT Copolymer Film with 3D Network Structure for Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A1820-A1825.	2.9	7
27	Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes. Journal of Power Sources, 2016, 307, 208-213.	7.8	9
28	Redox Electrolytes in Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A5054-A5059.	2.9	394
29	Cell voltage versus electrode potential range in aqueous supercapacitors. Scientific Reports, 2015, 5, 9854.	3.3	117
30	Three dimensional (3D) flexible graphene foam/polypyrrole composite: towards highly efficient supercapacitors. RSC Advances, 2015, 5, 3999-4008.	3.6	44
31	Achieving low voltage half electrolysis with a supercapacitor electrode. Energy and Environmental Science, 2014, 7, 1018-1022.	30.8	9
32	Ideal Threeâ€Dimensional Electrode Structures for Electrochemical Energy Storage. Advanced Materials, 2014, 26, 2440-2445.	21.0	223
33	Surface Analysis of Collophane by X-Ray Photoelectron Spectroscopy. Advanced Materials Research, 2013, 634-638, 3511-3516.	0.3	0
34	20 V stack of aqueous supercapacitors with carbon (â^'), titanium bipolar plates and CNTâ€polypyrrole composite (+). AICHE Journal, 2012, 58, 974-983.	3.6	34
35	Interfacial Synthesis: Amphiphilic Monomers Assisted Ultrarefining of Mesoporous Manganese Oxide Nanoparticles and the Electrochemical Implications. ACS Applied Materials & Interfaces, 2011, 3, 3120-3129.	8.0	44
36	Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: Comment on †Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties'. Chemical Communications, 2011, 47, 4105.	4.1	159

CHUANG PENG

#	Article	IF	CITATIONS
37	Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks. Electrochimica Acta, 2010, 55, 7447-7453.	5.2	69
38	Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors. Energy and Environmental Science, 2010, 3, 1499.	30.8	158
39	Electrodeposition of Nonconducting Polymers: Roles of Carbon Nanotubes in the Process and Products. ACS Nano, 2010, 4, 4274-4282.	14.6	45
40	Electrochemical Considerations in Supercapacitors with Nanocomposites. ECS Transactions, 2010, 33, 107-116.	0.5	3
41	Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs/SnO[sub 2] and CNTs/MnO[sub 2] Nanocomposites. Journal of the Electrochemical Society, 2009, 156, A846.	2.9	110
42	Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol–gel method. Applied Catalysis B: Environmental, 2008, 85, 17-23.	20.2	139
43	Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science: Materials International, 2008, 18, 777-788.	4.4	647
44	Internally referenced analysis of charge-transfer reactions in a new ferrocenyl bithiophenic conducting polymer through cyclic voltammetry. Chemical Communications, 2008, , 6606.	4.1	25
45	Electrochemical Methods to Enhance the Capacitance in Activated Carbon/Polyaniline Composites. Journal of the Electrochemical Society, 2008, 155, A672.	2.9	53
46	A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochimica Acta, 2007, 53, 525-537.	5.2	339
47	Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochemistry Communications, 2007, 9, 83-88.	4.7	152
48	Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly[3,4-ethylene-dioxythiophene]. Chemical Communications, 2006, , 4629.	4.1	86