
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/141002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the Basicity of Ionic Liquids for Equimolar CO ₂ Capture. Angewandte Chemie - International Edition, 2011, 50, 4918-4922.	13.8	587
2	Carbon Dioxide Capture by Superbaseâ€Đerived Protic Ionic Liquids. Angewandte Chemie - International Edition, 2010, 49, 5978-5981.	13.8	429
3	Molybdenum-Carbide-Modified Nitrogen-Doped Carbon Vesicle Encapsulating Nickel Nanoparticles: A Highly Efficient, Low-Cost Catalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 15753-15759.	13.7	415
4	Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation. Chemical Science, 2011, 2, 446-450.	7.4	407
5	Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy and Environmental Science, 2018, 11, 800-806.	30.8	407
6	In Situ-Generated Co ⁰ -Co ₃ O ₄ /N-Doped Carbon Nanotubes Hybrids as Efficient and Chemoselective Catalysts for Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 4783-4789.	11.2	363
7	Highly Efficient and Reversible SO ₂ Capture by Tunable Azole-Based Ionic Liquids through Multiple-Site Chemical Absorption. Journal of the American Chemical Society, 2011, 133, 11916-11919.	13.7	345
8	Significant Improvements in CO ₂ Capture by Pyridineâ€Containing Anionâ€Functionalized Ionic Liquids through Multipleâ€Site Cooperative Interactions. Angewandte Chemie - International Edition, 2014, 53, 7053-7057.	13.8	272
9	Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chemistry, 2015, 17, 715-736.	9.0	262
10	Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catalysis Science and Technology, 2016, 6, 3670-3693.	4.1	257
11	Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems. Green Chemistry, 2010, 12, 2019.	9.0	217
12	Tuning the Physicochemical Properties of Diverse Phenolic Ionic Liquids for Equimolar CO ₂ Capture by the Substituent on the Anion. Chemistry - A European Journal, 2012, 18, 2153-2160.	3.3	201
13	Prediction of the Solvation and Structural Properties of Ionic Liquids in Water by Two-Dimensional Correlation Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 6411-6419.	2.6	200
14	Metal-free allylic/benzylic oxidation strategies with molecular oxygen: recent advances and future prospects. Green Chemistry, 2014, 16, 2344.	9.0	195
15	Reversible and robust CO2 capture by equimolar task-specific ionic liquid–superbase mixtures. Green Chemistry, 2010, 12, 870.	9.0	185
16	Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption. Chemical Communications, 2012, 48, 2633.	4.1	168
17	Adsorption and Activation of O ₂ on Nitrogen-Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 9603-9607.	3.1	164
18	Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction. Green Chemistry, 2006, 8, 96-99.	9.0	159

#	Article	IF	CITATIONS
19	Tuning Anionâ€Functionalized Ionic Liquids for Improved SO ₂ Capture. Angewandte Chemie - International Edition, 2013, 52, 10620-10624.	13.8	152
20	Structures and Hydrogen Bonding Analysis ofN,N-Dimethylformamide andN,N-Dimethylformamideâ^'Water Mixtures by Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2003, 107, 1574-1583.	2.5	138
21	RuPd Alloy Nanoparticles Supported on N-Doped Carbon as an Efficient and Stable Catalyst for Benzoic Acid Hydrogenation. ACS Catalysis, 2015, 5, 3100-3107.	11.2	136
22	Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes. Green Chemistry, 2006, 8, 603.	9.0	132
23	Metal-free oxidation of sulfides by carbon nitride with visible light illumination at room temperature. Green Chemistry, 2012, 14, 1904.	9.0	131
24	The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 2013, 3, 15518.	3.6	127
25	Ionic liquids with metal chelate anions. Chemical Communications, 2012, 48, 2334.	4.1	125
26	Highly selective Pd@mpg-C3N4 catalyst for phenol hydrogenation in aqueous phase. RSC Advances, 2013, 3, 10973.	3.6	121
27	3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for toluene and quinoline hydrogenation. Green Chemistry, 2016, 18, 6082-6090.	9.0	121
28	Visibleâ€Lightâ€Induced Metalâ€Free Allylic Oxidation Utilizing a Coupled Photocatalytic System of gâ€C ₃ N ₄ and <i>N</i> â€Hydroxy Compounds. Advanced Synthesis and Catalysis, 2011, 353, 1447-1451.	4.3	119
29	Probing Electron Density of H-Bonding between Cationâ	2.6	117
30	Highly efficient SO ₂ capture through tuning the interaction between anion-functionalized ionic liquids and SO ₂ . Chemical Communications, 2013, 49, 1166-1168.	4.1	114
31	Designing of anionâ€functionalized ionic liquids for efficient capture of <scp>SO</scp> ₂ from flue gas. AICHE Journal, 2015, 61, 2028-2034.	3.6	109
32	Hydrogenation of Benzoic Acid and Derivatives over Pd Nanoparticles Supported on N-Doped Carbon Derived from Glucosamine Hydrochloride. ACS Catalysis, 2014, 4, 3132-3135.	11.2	108
33	Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination. Chemical Communications, 2012, 48, 6526.	4.1	101
34	Highly efficient SO ₂ capture by phenyl-containing azole-based ionic liquids through multiple-site interactions. Green Chemistry, 2014, 16, 1211-1216.	9.0	95
35	Selective oxidation of benzene to phenol by FeCl3/mpg-C3N4 hybrids. RSC Advances, 2013, 3, 5121.	3.6	89
36	Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A, 2014, 2, 605-609.	10.3	79

#	Article	IF	CITATIONS
37	Tuning the basicity of ionic liquids for efficient synthesis of alkylidene carbonates from CO ₂ at atmospheric pressure. Chemical Communications, 2016, 52, 7830-7833.	4.1	79
38	Design and Fabrication of Hierarchically Porous Carbon with a Template-free Method. Scientific Reports, 2014, 4, 6349.	3.3	77
39	Computer-Assisted Design of Ionic Liquids for Efficient Synthesis of 3(2 <i>H</i>)-Furanones: A Domino Reaction Triggered by CO ₂ . Journal of the American Chemical Society, 2016, 138, 14198-14201.	13.7	76
40	Highly efficient CO ₂ capture by carbonyl-containing ionic liquids through Lewis acid–base and cooperative C–Hâ⊂O hydrogen bonding interaction strengthened by the anion. Chemical Communications, 2014, 50, 15041-15044.	4.1	75
41	Highly Efficient Nitric Oxide Capture by Azoleâ€Based Ionic Liquids through Multipleâ€6ite Absorption. Angewandte Chemie - International Edition, 2016, 55, 14364-14368.	13.8	75
42	Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science and Technology, 2015, 5, 397-404.	4.1	73
43	Theoretical Study of the Proton Transfer of Uracil and (Water)n(n= 0â^'4):Â Water Stabilization and Mutagenicity for Uracil. Journal of Physical Chemistry B, 2004, 108, 12999-13007.	2.6	72
44	Comparison of the Blue-Shifted Câ^'D Stretching Vibrations for DMSO-d6 in Imidazolium-Based Room Temperature Ionic Liquids and in Water. Journal of Physical Chemistry B, 2009, 113, 5978-5984.	2.6	71
45	Structure and conformation properties of 1-alkyl-3-methylimidazolium halide ionic liquids: A density-functional theory study. Journal of Chemical Physics, 2005, 123, 174501.	3.0	70
46	Direct UV-spectroscopic measurement of selected ionic-liquid vapors. Physical Chemistry Chemical Physics, 2010, 12, 7246.	2.8	70
47	Density, Viscosity, and Refractive Index Properties for the Binary Mixtures of <i>n</i> -Butylammonium Acetate Ionic Liquid + Alkanols at Several Temperatures. Journal of Chemical & Engineering Data, 2012, 57, 298-308.	1.9	70
48	Solvent-free synthesis of unsaturated ketones by the Saucy–Marbet reaction using simple ammonium ionic liquid as a catalyst. Green Chemistry, 2009, 11, 843.	9.0	64
49	Mesoporous nitrogen-doped carbon for copper-mediated Ullmann-type C–O/–N/–S cross-coupling reactions. RSC Advances, 2013, 3, 1890-1895.	3.6	59
50	Ni-promoted synthesis of graphitic carbon nanotubes from in situ produced graphitic carbon for dehydrogenation of ethylbenzene. Chemical Communications, 2015, 51, 12859-12862.	4.1	56
51	Designing an anion-functionalized fluorescent ionic liquid as an efficient and reversible turn-off sensor for detecting SO ₂ . Chemical Communications, 2017, 53, 3862-3865.	4.1	54
52	The synergic effects at the molecular level in CoS ₂ for selective hydrogenation of nitroarenes. Green Chemistry, 2018, 20, 671-679.	9.0	54
53	Ionicity of Protic Ionic Liquid: Quantitative Measurement by Spectroscopic Methods. Journal of Physical Chemistry B, 2017, 121, 1372-1376.	2.6	53
54	Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Research, 2014, 7, 1809-1819.	10.4	52

HAORAN LI

#	Article	IF	CITATIONS
55	PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. Journal of Catalysis, 2017, 350, 13-20.	6.2	51
56	Highly Efficient Synthesis of Quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-diones from CO ₂ by Hydroxyl Functionalized Aprotic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 5760-5765.	6.7	50
57	A cobalt Schiff base with ionic substituents on the ligand as an efficient catalyst for the oxidation of 4-methyl guaiacol to vanillin. Green Chemistry, 2012, 14, 2894.	9.0	45
58	Ultrafinely dispersed Pd nanoparticles on a CN@MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds. Green Chemistry, 2014, 16, 4371-4377.	9.0	45
59	Characterizing the Structural Properties ofN,N-Dimethylformamide-Based Ionic Liquid:Â Density-Functional Study. Journal of Physical Chemistry B, 2007, 111, 11016-11020.	2.6	41
60	Iron chloride supported on pyridine-modified mesoporous silica: an efficient and reusable catalyst for the allylic oxidation of olefins with molecular oxygen. Green Chemistry, 2008, 10, 827.	9.0	41
61	Correlation Analysis of the Substituent Electronic Effects on the Allylic H-Abstraction in Cyclohexene by Phthalimide- <i>N</i> -oxyl Radicals: a DFT Study. Journal of Physical Chemistry B, 2010, 114, 4862-4869.	2.6	40
62	Different Weak Câ^'H···O Contacts inN-Methylacetamide-Water System: Molecular Dynamics Simulations and NMR Experimental Study. Journal of Physical Chemistry B, 2004, 108, 12596-12601.	2.6	38
63	The structural organization in aqueous solutions of ionic liquids. AICHE Journal, 2009, 55, 198-205.	3.6	38
64	Equilibrium in Protic Ionic Liquids: The Degree of Proton Transfer and Thermodynamic Properties. Journal of Physical Chemistry B, 2018, 122, 309-315.	2.6	35
65	A relay identification fluorescence probe for Fe3+ and phosphate anion and its applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 172-179.	3.9	34
66	Effects of ionic liquids on the oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone under atmospheric oxygen. Catalysis Communications, 2009, 10, 725-727.	3.3	32
67	Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues. Journal of Molecular Catalysis A, 2015, 402, 79-82.	4.8	31
68	Highly efficient synthesis of alkylidene cyclic carbonates from low concentration CO ₂ using hydroxyl and azolate dual functionalized ionic liquids. Green Chemistry, 2021, 23, 592-596.	9.0	31
69	Proton Transfer of Formamide +nH2O (n= 0â^'3):Â Protective and Assistant Effect of the Water Molecule. Journal of Physical Chemistry A, 2004, 108, 10219-10224.	2.5	30
70	Coulombic-enhanced hetero radical pairing interactions. Nature Communications, 2018, 9, 1961.	12.8	30
71	Dynamic Modification of Palladium Catalysts with Chain Alkylamines for the Selective Hydrogenation of Alkynes. ACS Applied Materials & amp; Interfaces, 2021, 13, 31775-31784.	8.0	30
72	Preparation of dialkoxypropanes in simple ammonium ionic liquids. Green Chemistry, 2006, 8, 1076.	9.0	29

HAORAN LI

#	Article	lF	CITATIONS
73	An environmentally benign catalytic oxidation of cholesteryl acetate with molecular oxygen by using N-hydroxyphthalimide. Green Chemistry, 2009, 11, 2013.	9.0	29
74	Molecular Dynamics Simulations of Biotin in Aqueous Solution. Journal of Physical Chemistry B, 2004, 108, 10131-10137.	2.6	28
75	Microscopic structures of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate in water probed by the relative chemical shift. Science China Chemistry, 2010, 53, 1561-1565.	8.2	26
76	Metal and solvent-free oxidation of α-isophorone to ketoisophorone by molecular oxygen. Catalysis Communications, 2010, 11, 758-762.	3.3	26
77	Recent progress in studies on polarity of ionic liquids. Science China Chemistry, 2016, 59, 517-525.	8.2	26
78	Selective Oneâ€Step Aerobic Oxidation of Cyclohexane to ϵâ€Caprolactone Mediated by <i>N</i> â€Hydroxyphthalimide (NHPI). ChemCatChem, 2019, 11, 2260-2264.	3.7	26
79	Highly Efficient and Reversible Nitric Oxide Capture by Functionalized Ionic Liquids through Multiple-Site Absorption. ACS Sustainable Chemistry and Engineering, 2020, 8, 2990-2995.	6.7	26
80	Theoretical Studies on Mutiâ€Hydroxyimides as Highly Efficient Catalysts for Aerobic Oxidation. ChemPhysChem, 2013, 14, 179-184.	2.1	25
81	The Polarity of Ionic Liquids: Relationship between Relative Permittivity and Spectroscopic Parameters of Probe. Industrial & Engineering Chemistry Research, 2019, 58, 7352-7361.	3.7	25
82	Efficient capture of CO ₂ from flue gas at high temperature by tunable polyamineâ€based hybrid ionic liquids. AICHE Journal, 2020, 66, e16779.	3.6	25
83	Electron paramagnetic resonance studies of the chelate-based ionic liquid in different solvents. Green Energy and Environment, 2020, 5, 341-346.	8.7	25
84	Acetylacetone–metal catalyst modified by pyridinium salt group applied to the NHPI-catalyzed oxidation of cholesteryl acetate. Catalysis Science and Technology, 2011, 1, 1133.	4.1	24
85	Insight into the Role of Additives in Catalytic Synthesis of Cyclohexylamine from Nitrobenzene. Chinese Journal of Chemistry, 2018, 36, 1191-1196.	4.9	24
86	Magnetic nano-structured cobalt–cobalt oxide/nitrogen-doped carbon material as an efficient catalyst for aerobic oxidation of p -cresols. Molecular Catalysis, 2018, 453, 121-131.	2.0	24
87	A mild and efficient oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone in ionic liquids. Catalysis Communications, 2008, 9, 1979-1981.	3.3	23
88	NMR and Excess Volumes Studies in DMF–Alcohol Mixtures. Journal of Solution Chemistry, 2002, 31, 109-117.	1.2	21
89	Theoretical Design of Multiâ€Nitroxyl Organocatalysts with Enhanced Reactivity for Aerobic Oxidation. ChemPhysChem, 2014, 15, 1673-1680.	2.1	21
90	The capture and simultaneous fixation of CO2 in the simulationÂofÂfuel gas by bifunctionalized ionic liquids. International Journal of Hydrogen Energy, 2016, 41, 9175-9182.	7.1	21

#	Article	IF	CITATIONS
91	Synthesis of Mesoporous FeN/C Materials with High Catalytic Performance in the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 2937-2944.	3.7	20
92	Highly Efficient CO ₂ Capture by Imidazolium Ionic Liquids through a Reduction in the Formation of the Carbene–CO ₂ Complex. Industrial & Engineering Chemistry Research, 2017, 56, 8066-8072.	3.7	20
93	Design and tuning of ionic liquid–based HNO donor through intramolecular hydrogen bond for efficient inhibition of tumor growth. Science Advances, 2020, 6, .	10.3	20
94	Structure–reactivity landscape of N -hydroxyphthalimides with ionic-pair substituents as organocatalysts in aerobic oxidation. Journal of Catalysis, 2015, 331, 76-85.	6.2	19
95	Tuning the Capture of CO2 through Entropic Effect Induced by Reversible Trans–Cis Isomerization of Light-Responsive Ionic Liquids. Journal of Physical Chemistry Letters, 2019, 10, 3346-3351.	4.6	19
96	Restricting Effect of Solvent Aggregates on Distribution and Mobility of CuCl ₂ in Homogenous Catalysis. ACS Catalysis, 2019, 9, 6588-6595.	11.2	19
97	1,5,7â€Triazabicyclo[4.4.0]decâ€5â€ene Enhances Activity of Peroxide Intermediates in Phosphineâ€Free αâ€Hydroxylation of Ketones. Angewandte Chemie - International Edition, 2021, 60, 6631-6638.	13.8	19
98	Molar Conductance of Sodium Bromide and Sodium Iodide in Methanol + Water at 298.15 K. Journal of Chemical & Engineering Data, 1997, 42, 651-654.	1.9	18
99	Infrared spectroscopic study on chemical and phase equilibrium in triethylammonium acetate. Science China Chemistry, 2012, 55, 1688-1694.	8.2	18
100	Reversible CO ₂ Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon–Oxygen Bonds. ChemSusChem, 2016, 9, 2351-2357.	6.8	18
101	Reactivity and mechanism investigation of selective hydrogenation of 2,3,5-trimethylbenzoquinone on in situ generated metallic cobalt. Catalysis Science and Technology, 2016, 6, 4503-4510.	4.1	18
102	<i>N</i> â€Hydroxyphthalimide (NHPI) Promoted Aerobic Baeyerâ€Villiger Oxidation in the Presence of Aldehydes. ChemCatChem, 2018, 10, 4947-4952.	3.7	17
103	Prediction of Vaporâ^Liquid Equilibria of Alcoholâ^Hydrocarbon Systems by 1H NMR and Activity Coefficients at Infinite Dilution. Industrial & Engineering Chemistry Research, 2005, 44, 408-415.	3.7	15
104	Landscape of the structure–O–H bond dissociation energy relationship of oximes and hydroxylamines. Physical Chemistry Chemical Physics, 2017, 19, 22309-22320.	2.8	15
105	Selective Aerobic Oxidation of Secondary C (sp3)-H Bonds with NHPI/CAN Catalytic System. Catalysis Letters, 2021, 151, 1663-1669.	2.6	15
106	Synthesis and characterization of thermo- and pH-sensitive block copolymers bearing a biotin group at the poly(ethylene oxide) chain end. Journal of Applied Polymer Science, 2006, 102, 3552-3558.	2.6	14
107	Effect of the Temperature and Coordination Atom on the Physicochemical Properties of Chelate-Based Ionic Liquids and Their Binary Mixtures with Water. Journal of Chemical & Engineering Data, 2014, 59, 3960-3968.	1.9	14
108	Unexpected oxidation of β-isophorone with molecular oxygen promoted by TEMPO. RSC Advances, 2014, 4, 15590.	3.6	14

#	Article	IF	CITATIONS
109	Ultrahigh Nitric Oxide Capture by Tetrakis(azolyl)borate Ionic Liquid through Multiple-Sites Uniform Interaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 3357-3362.	6.7	14
110	Structures and Electronic Properties of Lithium Chelate-Based Ionic Liquids. Journal of Physical Chemistry B, 2016, 120, 3904-3913.	2.6	12
111	Significantly Enhanced Carbon Dioxide Capture by Anion-Functionalized Liquid Pillar[5]arene through Multiple-Site Interactions. Industrial & Engineering Chemistry Research, 2019, 58, 16894-16900.	3.7	12
112	Effects of ionicity and chain structure on the physicochemical properties of protic ionic liquids. AICHE Journal, 2020, 66, e16982.	3.6	12
113	Prediction of Vaporâ~'Liquid Equilibria Data from Câ~'H Band Shifts of Raman Spectra and Activity Coefficients at Infinite Dilution in Some Aqueous Systems. Industrial & Engineering Chemistry Research, 2005, 44, 6883-6887.	3.7	11
114	Role of alkali in catalytic oxidation of p -cresols. Journal of Molecular Catalysis A, 2016, 420, 45-49.	4.8	11
115	Kinetic studies on the liquidâ€phase catalytic oxidation of 4â€methyl guaiacol to vanillin. Canadian Journal of Chemical Engineering, 2017, 95, 1544-1553.	1.7	10
116	Empirical study of physicochemical and spectral properties of Cu ^{II} -containing chelate-based ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 4109-4117.	2.8	10
117	Distinguishing ionic and radical mechanisms of hydroxylamine mediated electrocatalytic alcohol oxidation using NO–H bond dissociation energies. Physical Chemistry Chemical Physics, 2018, 20, 28249-28256.	2.8	10
118	Design of Betaine Functional Catalyst for Efficient Copolymerization of Oxirane and CO2. Macromolecules, 2018, 51, 6057-6062.	4.8	10
119	Physicochemical Properties of the Binary Mixtures of Cu ^{II} -Containing Chelate-Based Ionic Liquids with Linear Alcohols. Industrial & Engineering Chemistry Research, 2020, 59, 897-904.	3.7	10
120	Cross-linked reverse micelles with embedded water pools: a novel catalytic system based on amphiphilic block copolymers. RSC Advances, 2014, 4, 38234-38240.	3.6	9
121	Highly Efficient Nitric Oxide Capture by Azoleâ€Based Ionic Liquids through Multipleâ€Site Absorption. Angewandte Chemie, 2016, 128, 14576-14580.	2.0	9
122	Modification of the Onsager Reaction Field and Its Application on Spectral Parameters. ChemPhysChem, 2017, 18, 763-771.	2.1	9
123	Anionâ€Functionalized Pillararenes for Efficient Sulfur Dioxide Capture: Significant Effect of the Anion and the Cavity. Chemistry - A European Journal, 2017, 23, 14143-14148.	3.3	9
124	A mutually stabilized host-guest pair. Science Advances, 2019, 5, eaax6707.	10.3	9
125	Density, Viscosity, Electrical Conductivity, and Surface Tension of Chelate-Based Ionic Liquids [C ₁₀ mim][M(hfac) ₃] (M = Co, Ni, Cu) at Different Temperatures. Journal of Chemical & Engineering Data, 2019, 64, 4264-4271.	1.9	9
126	Highly Efficient and Reversible Absorption and Oxidation of Low-Concentration Nitric Oxide by Functionalized Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 7154-7159.	6.7	9

HAORAN LI

#	Article	IF	CITATIONS
127	Exploring a new kind of aromatic hydrogen bond: hydrogen bonding to all-metal aromatic species. New Journal of Chemistry, 2005, 29, 1295.	2.8	8
128	The Effect of C4H and C5H on the Microstructure of Aqueous Solutions of 1â€Alkylâ€3â€methylimidazolium Tetrafluoroborate Ionic Liquids. ChemPhysChem, 2015, 16, 2861-2867.	2.1	8
129	Insight into 2,3,6-Trimethylphenol oxidation by comparing the difference between cupric acetate and cupric chloride catalysis. Molecular Catalysis, 2019, 472, 10-16.	2.0	8
130	Distribution of Spin Density on Phenoxyl Radicals Affects the Selectivity of Aerobic Oxygenation of Phenols. Inorganic Chemistry, 2020, 59, 3562-3569.	4.0	8
131	Elucidating Interactions between DMSO and Chelateâ€Based Ionic Liquids. ChemPhysChem, 2015, 16, 3836-3841.	2.1	7
132	Kinetics of Isophorone Synthesis via Selfâ€Condensation of Supercritical Acetone. Chemical Engineering and Technology, 2016, 39, 1867-1874.	1.5	7
133	Insight into the Co(II)/NaOH and Cu(II)/NaOH catalytic oxidation of 4-methyl guaiacol: Structures of catalysts and reaction pathways. Molecular Catalysis, 2017, 428, 24-32.	2.0	7
134	Aerobic Oxidation of 2-Methoxy-4-methylphenol to Vanillin Catalyzed by Cobalt/NaOH: Identification of CoO _{<i>x</i>} (OH) _{<i>y</i>} Nanoparticles as the True Catalyst. ACS Catalysis, 2018, 8, 9103-9114.	11.2	7
135	Vaporâ^'Liquid Equilibria for the Binary Mixture α-Pinene + Octane. Journal of Chemical & Engineering Data, 2003, 48, 1120-1121.	1.9	6
136	Isothermal and Isobaric Vaporâ^'Liquid Equilibria of the Ternary System of 2,2-Dimethoxypropane + Acetone + Methanol. Journal of Chemical & Engineering Data, 2005, 50, 1837-1840.	1.9	6
137	Synthesis and characterization of poly(dimethylamino ethyl methacrylate)–poly(ethylene) Tj ETQq1 1 0.78431 Science, 2009, 114, 1551-1556.	4 rgBT /C 2.6)verlock 10 T 6
138	Îμ-Caprolactone manufacture via efficient coupling Baeyer-Villiger oxidation with aerobic oxidation of alcohols. Molecular Catalysis, 2020, 490, 110947.	2.0	6
139	1,5,7â€Triazabicyclo[4.4.0]decâ€5â€ene Enhances Activity of Peroxide Intermediates in Phosphineâ€Free αâ€Hydroxylation of Ketones. Angewandte Chemie, 2021, 133, 6705-6712.	2.0	6
140	Aerobic α-hydroxylation of 2-Me-1-tetralone in 1-alkyl-3-methylimidazolium ionic liquids. Physical Chemistry Chemical Physics, 2021, 23, 5864-5869.	2.8	6
141	Metal-Free Synthesis of Sulfones and Sulfoxides through Aldehyde-Promoted Aerobic Oxidation of Sulfides. Catalysis Letters, 2022, 152, 1131-1139.	2.6	6
142	Phase and Chemical Equilibria of Biphasic Protic Ionic Liquid: Triethylamine–Acetic Acid. Industrial & Engineering Chemistry Research, 2021, 60, 13719-13726.	3.7	6
143	Aerobic Oxidations via Organocatalysis: A Mechanistic Perspective. Synthesis, 0, 0, .	2.3	6
144	The base-catalyzed aerobic oxidation of hydroquinones to benzoquinones under metal-free conditions. Green Chemistry, 2022, 24, 3218-3224.	9.0	6

#	Article	IF	CITATIONS
145	Vaporâ^'Liquid Equilibria for the Binary Mixtures Dehydrolinalool + 1-Propanol and Dehydrolinalool + 1-Butanol. Journal of Chemical & Engineering Data, 2001, 46, 1231-1234.	1.9	5
146	Electronic effect of ionicâ€pair substituents. Journal of Physical Organic Chemistry, 2013, 26, 460-466.	1.9	5
147	Oxidation of KA oil to caprolactone with molecular oxygen using N-hydroxyphthalimide-mediated Ce(NH4)2(NO3)6 catalyst. Molecular Catalysis, 2019, 467, 24-29.	2.0	5
148	A tiny chargeâ€scaling in the <scp>OPLSâ€AA</scp> + <scp>Lâ€OPLS</scp> force field delivers the realistic dynamics and structure of liquid primary alcohols. Journal of Computational Chemistry, 2022, 43, 421-430.	3.3	5
149	The relationships of catalytic activity of metal Schiff base catalysts and the Hammett constants of their anion–cationic substituents on ligand. Journal of Physical Organic Chemistry, 2015, 28, 570-574.	1.9	4
150	Diverse catalytic efficiency of nitroxyl radicals tuned by Lewis acids in the oxidation of hydrocarbons. Catalysis Communications, 2015, 67, 31-34.	3.3	4
151	One-pot Baeyer–Villiger oxidation of cyclohexanone with in situ generated hydrogen peroxide over Sn-Beta zeolites. Green Chemical Engineering, 2021, 2, 294-300.	6.3	4
152	Mass Transfer Reaction Kinetics of <i>β</i> â€Isophorone Oxidation by Air in an Agitator Bubbling Reactor. Chemical Engineering and Technology, 2014, 37, 1797-1804.	1.5	3
153	A Designed TEMPOâ€derivate Catalyst with Switchable Signals of EPR and Photoluminescence: Application in the Mechanism of Alcohol Oxidation. ChemCatChem, 2018, 10, 3513-3519.	3.7	3
154	Structural and electronic properties of Cu ^{II} , Co ^{II} , and Ni ^{II} -containing chelate-based ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 11417-11430.	2.8	3
155	Tuning the Basicity for Highly Efficient and Reversible Hydrogen Chloride Absorption to Develop a Green Acid Scavenger. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	3
156	Solvent Effect on the Ionicity of Protic Ionic Liquid: 1-Methylimidazolium-Acetic Acid. Journal of Physical Chemistry B, 2022, 126, 2279-2284.	2.6	3
157	A mixed order density functional theory for adhesive hard sphere fluid confined between two hard walls. Journal of Chemical Physics, 2001, 115, 1115-1117.	3.0	2
158	A DFT investigation exploring the influence of lone electron pair on hyperfine structures of N-centered radicals. Chemical Physics, 2019, 517, 13-23.	1.9	2
159	Catalytic oxidation of α-substituted cyclohexanone with steric hindrance to 6-oxohexanoic acid involved during the total synthesis of (+)-biotin. Applied Catalysis A: General, 2021, 624, 118304.	4.3	2
160	Vaporâ^'Liquid Equilibria for the Quaternary System Ethanol + Acetone + Benzene + Hexane. Journal of Chemical & Engineering Data, 1997, 42, 655-657.	1.9	1
161	Elemental composition method for computation and analysis of simultaneous chemical and phase equilibrium. Science Bulletin, 2000, 45, 2241-2246.	1.7	1
162	Theoretical studies on the proton-transfer reactions in propylene and pentadiene derivatives. Structural Chemistry, 2015, 26, 587-597.	2.0	1

#	Article	IF	CITATIONS
163	Special Mixing Behavior of Chelateâ€based Ionic Liquid with Methanol. ChemPhysChem, 2021, 22, 2050-2057.	2.1	1
164	The interactions of chelate-based ionic liquids: from the perspective of vaporization enthalpy. Physical Chemistry Chemical Physics, 2022, , .	2.8	0
165	Application of electron paramagnetic resonance in solution property. Scientia Sinica Chimica, 2022, 52, 647-654.	0.4	Ο