
Wen-Ting Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1409839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ringâ€Opening/Cyclization of Cyclobutanone Oxime Esters with Alkenes in Biomassâ€Derived Solvent Using Copper Catalyst and Inorganic Oxidant. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
2	Metal-Catalyst-Free Radical Cyclization of 1,6-Enynes for the Selective and Switchable Synthesis of Lactams in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 6057-6062.	3.2	25
3	Transitionâ€Metalâ€Free Radical Cyclization of 2â€Arylbenzoimidazoles with Unactivated Alkanes <i>via</i> C(<i>sp</i> ³)â`'H Functionalizations in Aqueous Media. Advanced Synthesis and Catalysis, 2022, 364, 2080-2085.	2.1	16
4	Synthesis of Polycyclic Quinazolinones through C(sp ³)â^'H Functionalization of Inert Alkanes or Visibleâ€Lightâ€Promoted Oxidation Decarboxylation of <i>N</i> â€Hydroxyphthalimide Esters. European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
5	Visible-Light-Catalyzed Tandem Radical Addition/1,5-Hydrogen Atom Transfer/Cyclization of 2-Alkynylarylethers with Sulfonyl Chlorides. Organic Letters, 2022, 24, 4704-4709.	2.4	41
6	Fe-Catalyzed Selective Formal Insertion of Diazo Compounds into C(sp)–C(sp ³) Bonds of Propargyl Alcohols: Access to Alkyne-Substituted All-Carbon Quaternary Centers. ACS Central Science, 2022, 8, 1028-1034.	5.3	8
7	N-Radical enabled cyclization of 1,n-enynes. Chinese Journal of Catalysis, 2021, 42, 731-742.	6.9	33
8	Iron-catalyzed oxidative cyclization of olefinic 1,3-dicarbonyls with ketone C(sp ³)–H bonds: facile access to 2,3-dihydrofurans. New Journal of Chemistry, 2021, 45, 13639-13643.	1.4	6
9	The construction of benzimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones from <i>N</i> -methacryloyl-2-phenylbenzoimidazoles through radical strategies. Organic and Biomolecular Chemistry, 2021, 19, 8874-8885.	1.5	14
10	Sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes. Chemical Communications, 2021, 57, 8288-8291.	2.2	20
11	Recent progress in the radical α-C(sp ³)–H functionalization of ketones. Organic and Biomolecular Chemistry, 2021, 19, 7333-7347.	1.5	13
12	Radical Cyclization of Olefinic Amides through α-C(sp3)–H Functionalization of Ketones under Catalyst-, Ligand-, and Base-Free Conditions. Synlett, 2021, 32, 905-912.	1.0	4
13	Visibleâ€Lightâ€Catalyzed Nâ€Radicalâ€Enabled Cyclization of Alkenes for the Synthesis of Fiveâ€Membered Nâ€Heterocycles. ChemSusChem, 2021, 14, 4658-4670.	3.6	22
14	Radical Cyclization of 1, <i>n</i> â€Enynes and 1, <i>n</i> â€Dienes for the Synthesis of 2â€Pyrrolidone. Chemistry - an Asian Journal, 2021, 16, 3068-3081.	1.7	21
15	Recent advances in acyl radical enabled reactions between aldehydes and alkenes. Chemical Communications, 2021, 57, 6111-6120.	2.2	40
16	Selective divergent radical cyclization of 1,6-dienes with alkyl nitriles. Organic and Biomolecular Chemistry, 2021, 19, 9501-9505.	1.5	5
17	1,3-Difunctionalization of alkenes: state-of-the-art and future challenges. Organic Chemistry Frontiers, 2021, 8, 7037-7049.	2.3	31
18	Metalâ€free Radical Cyclization of Olefinic 1,3â€Dicarbonyls and Olefinic Amides with Nitrile C(sp ³)â^H Bonds in Aqueous Media. Asian Journal of Organic Chemistry, 2021, 10, 3380-3383.	1.3	2

WEN-TING WEI

#	Article	IF	CITATIONS
19	Recent Advances in Copper atalyzed Câ^'N Bond Formation Involving <i>N</i> entered Radicals. ChemSusChem, 2021, 14, 5340-5358.	3.6	23
20	Recent Advances in Radical Nitration Using tert-Butyl Nitrite. Synthesis, 2020, 52, 796-806.	1.2	18
21	Radical cyclizations of enynes/dienes with alcohols in water using a green oxidant. Organic and Biomolecular Chemistry, 2020, 18, 8491-8495.	1.5	15
22	Halocyclization of Olefinic 1,3-Dicarbonyls and Olefinic Amides in Aqueous Media Open in Air at Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 16946-16951.	3.2	17
23	Alcohols controlled selective radical cyclization of 1,6-dienes under mild conditions. Chinese Chemical Letters, 2020, 31, 3267-3270.	4.8	23
24	Visibleâ€Light Induced C(<i>sp</i> ³)â^'H Functionalization for the Formation of Câ^'N Bonds under Metal Catalystâ€Free Conditions. Advanced Synthesis and Catalysis, 2020, 362, 2770-2777.	2.1	22
25	Radical cyclization of 1,6-dienes with azobis(alkylcarbonitriles) on water under additive-free conditions. Green Chemistry, 2020, 22, 4593-4596.	4.6	32
26	Recent Progress in the Construction of Câ^'N Bonds <i>via</i> Metalâ€Free Radical C(<i>sp</i> ³)â^'H Functionalization. Advanced Synthesis and Catalysis, 2020, 362, 2120-2134.	2.1	49
27	A BODIPYâ€Hemicyanineâ€Based Waterâ€Soluble Dualâ€Color Fluorescence Probe for Colorimetric Monitoring of Intracellular Endogenous Sulfur Dioxide and Bioimaging Applications. ChemistrySelect, 2020, 5, 3033-3040.	0.7	2
28	Rational design of in situ localization solid-state fluorescence probe for bio-imaging of intracellular endogenous cysteine. Talanta, 2020, 220, 121364.	2.9	22
29	Visible-light-initiated regioselective sulfonylation/cyclization of 1,6-enynes under photocatalyst- and additive-free conditions. Green Chemistry, 2020, 22, 1388-1392.	4.6	109
30	Photochemical strategies for C–N bond formation <i>via</i> metal catalyst-free (hetero) aryl C(sp ²)–H functionalization. Green Chemistry, 2020, 22, 3060-3068.	4.6	46
31	Acylation/cyclization of 1,6-dienes with ethers under catalyst- and base-free conditions. Green Chemistry, 2020, 22, 3952-3955.	4.6	39
32	Silver-catalyzed oxidative 1,2-alkyletherification of unactivated alkenes with α-bromoalkyl carbonyls: facile access to highly substituted 2,3-dihydrofurans. Chemical Communications, 2019, 55, 11111-11114.	2.2	14
33	Metalâ€Free Hydroxyalkylationâ€Initiated Radical Cyclization of 1,6â€Enynes with Alcohols. Asian Journal of Organic Chemistry, 2019, 8, 1827-1829.	1.3	9
34	Metal-Free Regioselective Radical Cyclization of 1,6-Enynes with Carbonyl Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 13491-13496.	3.2	37
35	Base-promoted domino radical cyclization of 1,6-enynes. Organic and Biomolecular Chemistry, 2019, 17, 7674-7678.	1.5	13
36	Oxone-Mediated Radical Bicyclization of 1,6-Enynes through Dual α-C(sp ³)–H Functionalization of Ketones under Catalyst- and Base-Free Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 18738-18743.	3.2	37

WEN-TING WEI

#	Article	IF	CITATIONS
37	Copperâ€Catalyzed Sulfonyl Radicalâ€Enabled Regioselective Cyclization of 1,6â€Enynes. Asian Journal of Organic Chemistry, 2019, 8, 2050-2053.	1.3	15
38	Selective Cyanoalkylation and [2+2+2] Annulation of 1,6â€Enynes with Azobis(alkylcarbonitriles) under Mild Conditions. European Journal of Organic Chemistry, 2019, 2019, 7673-7677.	1.2	11
39	Copperâ€Mediated Cascade Trifunctionalization of N â€Propargylamides. Asian Journal of Organic Chemistry, 2019, 8, 2006-2010.	1.3	4
40	A Base―and Ligandâ€Free Copperâ€Catalyzed Oxidative Coupling of Terminal Alkyl Alkynes. ChemistrySelect, 2019, 4, 298-301.	0.7	0
41	Potassiumâ€Persulfateâ€Promoted Regioselective Azidation/Cyclization of 1,6â€Enynes. Asian Journal of Organic Chemistry, 2019, 8, 832-835.	1.3	7
42	Metalâ€Free Regioselective Oxynitration of Acrylamides: Synthesis of 1,2â€Nitro Alcohols. Asian Journal of Organic Chemistry, 2019, 8, 348.	1.3	8
43	Cu(NO 3) 2 /Oxoneâ€Mediated Radical Nitration Cyclization of 1,6â€Enynes. ChemistrySelect, 2019, 4, 13380-13383.	0.7	4
44	Copper-Catalyzed C(sp3)–H Azidation of 1,3-Dihydro-2H-indol-2-ones Under Mild Conditions. Synlett, 2019, 30, 109-113.	1.0	9
45	Radical Heck-type reaction of styrenes with sulfonyl hydrazides on water at room temperature. Tetrahedron Letters, 2019, 60, 55-58.	0.7	24
46	Recent Advances in the Construction of C–N Bonds Through Coupling Reactions between Carbon Radicals and Nitrogen Radicals. Advanced Synthesis and Catalysis, 2018, 360, 2076-2086.	2.1	93
47	TEMPOâ€Promoted C(sp ³)â~H Hydroxylation of 2â€Oxindoles at Room Temperature. Asian Journal of Organic Chemistry, 2018, 7, 337-340.	1.3	18
48	Transition-Metal-Free C(sp ³)–H Hydroxylation of 2-Oxindoles with Peroxides via Radical Cross-Coupling Reaction in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 8029-8033.	3.2	27
49	Copperâ€Promoted Tandem Radical Reaction of 2â€Oxindoles with Formamides: Facile Synthesis of Unsymmetrical Urea Derivatives. Asian Journal of Organic Chemistry, 2018, 7, 1057-1060.	1.3	7
50	Metal-Free C(<i>sp</i> ³)–H Amination of 2-Oxindoles in Water: Facile Synthesis of 3-Substituted 3-Aminooxindoles. ACS Sustainable Chemistry and Engineering, 2018, 6, 5615-5619.	3.2	29
51	Synthesis of Indoline-2,3-diones by Radical Coupling of Indolin-2-ones with tert-Butyl Hydroperoxide. Synlett, 2018, 29, 215-218.	1.0	9
52	C(sp3)–H Peroxidation of 3-Substituted Indolin-2-ones under Metal-Free Conditions. Synlett, 2018, 29, 663-667.	1.0	11
53	Regioselective Nitrative Cyclization of 1,6-Enynes with <i>t</i> -BuONO under Metal-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 15301-15305.	3.2	35
54	Room Temperature, Metal-Free, Radical Chloroazidation of 1,6-Enynes. Synlett, 2018, 29, 1664-1668.	1.0	12

WEN-TING WEI

#	Article	IF	CITATIONS
55	Recent Developments in the C(sp ³)â^'H Functionalization of 2â€Oxindoles through Radical Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1429-1438.	1.3	19
56	Metal-Free C(sp ³)–H Azidation in a Radical Strategy for the Synthesis of 3-Azido-2-oxindoles at Room Temperature. Journal of Organic Chemistry, 2018, 83, 11074-11079.	1.7	26
57	Room-Temperature, Water-Promoted, Radical-Coupling Reactions of Phenols with tert-Butyl Nitrite. Synlett, 2017, 28, 2153-2156.	1.0	23
58	Metalâ€Free Nitration of the C(<i>sp</i> ³)â^'H Bonds of 2â€Oxindoles through Radical Coupling Reaction at Room Temperature. Advanced Synthesis and Catalysis, 2017, 359, 3551-3554.	2.1	44
59	Convenient and Clean Synthesis of Isatins by Metal-Free Oxidation of Oxindoles. Synlett, 2017, 28, 2307-2310.	1.0	11
60	Metal-free synthesis of isatin oximes via radical coupling reactions of oxindoles with t-BuONO in water. Organic and Biomolecular Chemistry, 2017, 15, 5254-5257.	1.5	22
61	Copper-catalyzed oxidative [2+2+1] annulation of 1,n-enynes with α-carbonyl alkyl bromides through C–Br/C–H functionalization. Chemical Communications, 2016, 52, 3328-3331.	2.2	80
62	Copper-catalyzed oxidative oxyalkylation of enol ethers with α-amino carbonyl compounds and hydroperoxides. Chemical Communications, 2015, 51, 11325-11328.	2.2	27
63	Nitrative Spirocyclization Mediated by TEMPO: Synthesis of Nitrated Spirocycles from <i>N</i> â€Ary propiolamides, <i>tert</i> â€Butyl Nitrite and Water. Advanced Synthesis and Catalysis, 2015, 357, 1161-1166.	2.1	104
64	Oxidative Coupling of Alkenes with Aldehydes and Hydroperoxides: Oneâ€Pot Synthesis of 2,3â€Epoxy Ketones. Advanced Synthesis and Catalysis, 2015, 357, 59-63.	2.1	43
65	ipso-lodocyclization of para-Substituted 4-Aryl-1-alkenes Leading to 3-lodo-1-azaspiro[4.5]deca-6,9-diene-2,8-diones. Synthesis, 2014, 46, 2585-2590.	1.2	3
66	Iron-Catalyzed Oxidative Arylmethylation of Activated Alkenes Using a Peroxide as the Methyl Source. Synlett, 2014, 25, 657-660.	1.0	19
67	Copperâ€Catalyzed Oxidative αâ€Alkylation of αâ€Amino Carbonyl Compounds with Ethers <i>via</i> Dual C(<i>sp</i> ³)â€H Oxidative Cross―Coupling. Advanced Synthesis and Catalysis, 2014, 356, 1703-1707.	2.1	119
68	Copper-catalyzed oxidative ipso-carboalkylation of activated alkynes with ethers leading to 3-etherified azaspiro[4.5]trienones. Organic Chemistry Frontiers, 2014, 1, 484.	2.3	126
69	Oxidative coupling of alkenes with amides using peroxides: selective amide C(sp3)–H versus C(sp2)–H functionalization. Chemical Communications, 2014, 50, 12867-12869.	2.2	60
70	Synthesis of Oxindoles by Iron atalyzed Oxidative 1,2â€Alkylarylation of Activated Alkenes with an Aryl C(sp ²)H Bond and a C(sp ³)H Bond Adjacent to a Heteroatom. Angewandte Chemie - International Edition, 2013, 52, 3638-3641.	7.2	361
71	Metal-free oxidative tandem coupling of activated alkenes with carbonyl C(sp2)–H bonds and aryl C(sp2)–H bonds using TBHP. Chemical Science, 2013, 4, 2690.	3.7	254
72	Copper-Catalyzed Oxidative Cyanation of Aryl Halides with Nitriles Involving Carbon–Carbon Cleavage. Synlett, 2012, 23, 2491-2496.	1.0	36