Kao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1408815/publications.pdf

Version: 2024-02-01

all docs

46 1,595 21 39 g-index

46 46 46 46 1625

times ranked

docs citations

citing authors

#	Article	IF	CITATIONS
1	Physical, structural, and water barrier properties of emulsified blend film based on konjac glucomannan/agar/gum Arabic incorporating virgin coconut oil. LWT - Food Science and Technology, 2022, 154, 112683.	5.2	25
2	Impact of Curdlan Addition on the Properties of Konjac Glucomannan/Ethyl Cellulose Composite Films. Starch/Staerke, 2022, 74, 2100194.	2.1	2
3	The use of cellulose fiber from office waste paper to improve the thermal insulation-related property of konjac glucomannan/starch aerogel. Industrial Crops and Products, 2022, 177, 114424.	5.2	27
4	Properties of film-forming emulsions and films based on corn starch/sodium alginate/gum Arabic as affected by virgin coconut oil content. Food Packaging and Shelf Life, 2022, 32, 100819.	7.5	23
5	Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions. International Journal of Biological Macromolecules, 2021, 166, 1499-1507.	7.5	22
6	Impact of heating and drying temperatures on the properties of konjac glucomannan/curdlan blend films. International Journal of Biological Macromolecules, 2021, 167, 1544-1551.	7.5	22
7	Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels. Polymers, 2021, 13, 258.	4.5	11
8	Air filtration improvement of konjac glucomannan-based aerogel air filters through physical structure design. International Journal of Low-Carbon Technologies, 2021, 16, 867-872.	2.6	6
9	The advances of characterization and evaluation methods for the compatibility and assembly structure stability of food soft matter. Trends in Food Science and Technology, 2021, 112, 753-763.	15.1	13
10	Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation. Food Packaging and Shelf Life, 2021, 29, 100701.	7.5	39
11	Physicochemical properties, digestibility and expected glycaemic index of high amylose rice differing in lengthâ€width ratio in Sri Lanka. International Journal of Food Science and Technology, 2020, 55, 74-81.	2.7	6
12	Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. International Journal of Biological Macromolecules, 2020, 144, 690-697.	7.5	18
13	Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying. Carbohydrate Polymers, 2020, 250, 116840.	10.2	21
14	Regular Film Property Changes of Konjac Glucomannan/Mung Bean Starch Blend Films. Starch/Staerke, 2020, 72, 1900149.	2.1	12
15	Characterization of morphology and physicochemical properties of native starches isolated from 12 Lycoris species. Food Chemistry, 2020, 316, 126263.	8.2	11
16	Diversity analysis of starch physicochemical properties in 95 proso millet (Panicum miliaceum L.) accessions. Food Chemistry, 2020, 324, 126863.	8.2	24
17	Iron encapsulated microstructured gel beads using an emulsification–gelation technique for an alginate-caseinate matrix. Food and Function, 2020, 11, 3811-3822.	4.6	7
18	Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films. International Journal of Biological Macromolecules, 2019, 138, 135-143.	7. 5	26

#	Article	IF	Citations
19	Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohydrate Polymers, 2019, 224, 115129.	10.2	43
20	A Novel and Accurate Method for Moisture Adsorption Isotherm Determination of Sultana Raisins. Food Analytical Methods, 2019, 12, 2491-2499.	2.6	4
21	Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems. Carbohydrate Polymers, 2018, 188, 260-267.	10.2	42
22	Relationships Between Cooking Properties and Physicochemical Properties in Brown and White Rice. Starch/Staerke, 2018, 70, 1700167.	2.1	19
23	Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocolloids, 2018, 79, 301-309.	10.7	64
24	Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Research, 2018, 243, 75-82.	2.2	12
25	Physicochemical Properties of Mung Bean Starches Isolated From Four Varieties Grown in Sri Lanka. Starch/Staerke, 2018, 70, 1700129.	2.1	13
26	Microwave Treatment., 2018,, 97-117.		1
27	Preparation and stability of nano-scaled gel beads of λ-carrageenan bound with ferric ions. International Journal of Biological Macromolecules, 2018, 120, 2523-2529.	7.5	7
28	Effect of zein-based microencapsules on the release and oxidation of loaded limonene. Food Hydrocolloids, 2018, 84, 330-336.	10.7	37
29	Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia) Tj ETQq1 1 ().784314 ı	gBT/Overlo
30	Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydrate Polymers, 2018, 197, 284-291.	10.2	100
31	Investigation on curdlan dissociation by heating in water. Food Hydrocolloids, 2017, 70, 57-64.	10.7	49
32	pH-Sensitive drug delivery system based on hydrophobic modified konjac glucomannan. Carbohydrate Polymers, 2017, 171, 9-17.	10.2	29
33	Structural characterization and properties of konjac glucomannan and zein blend films. International Journal of Biological Macromolecules, 2017, 105, 1096-1104.	7. 5	131
34	Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science and Technology, 2017, 59, 1-14.	15.1	238
35	Diversity in Antioxidant Capacity, Phenolic Contents, and Flavonoid Contents of 42 Edible Beans from China. Cereal Chemistry, 2017, 94, 291-297.	2.2	19
36	Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour. Journal of Food Science, 2016, 81, E627-36.	3.1	27

#	Article	IF	CITATION
37	Physical stability and rheological properties of konjac glucomannan-ethyl cellulose mixed emulsions. International Journal of Biological Macromolecules, 2016, 92, 423-430.	7.5	23
38	Thermal and Rheological Properties of Mung Bean Starch Blends with Potato, Sweet Potato, Rice, and Sorghum Starches. Food and Bioprocess Technology, 2016, 9, 1408-1421.	4.7	29
39	Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (<i>Vigna radiata</i>) sprouts. International Journal of Food Science and Technology, 2016, 51, 2090-2098.	2.7	64
40	The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. International Journal of Biological Macromolecules, 2016, 92, 1130-1135.	7.5	70
41	Physicochemical and functional properties of <i>Caryota urens</i> flour as compared to wheat flour. International Journal of Food Science and Technology, 2016, 51, 2647-2653.	2.7	11
42	Thermal treatments affect the polyphenol profile and increase antioxidant capacity in five varieties of edible bean milks. International Journal of Food Science and Technology, 2016, 51, 954-961.	2.7	7
43	Indentation as a potential mechanical test for textural noodle quality. Journal of Food Engineering, 2016, 177, 42-49.	5.2	3
44	Adhesion, Cohesion, and Friction Estimated from Combining Cutting and Peeling Test Results for Thin Noodle Sheets. Journal of Food Science, 2015, 80, E370-6.	3.1	12
45	Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chemistry, 2013, 138, 1153-1161.	8.2	177
46	Enterococcus faecalisPheromone-Responding Plasmid pAD1 Gives Rise to an Aggregation (Clumping) Response When Cells Are Exposed to Subinhibitory Concentrations of Chloramphenicol, Frythromycin, or Tetracycline, Plasmid, 1999, 41, 82-88	1.4	17