
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407744/publications.pdf Version: 2024-02-01

LUAN CU

#	Article	IF	CITATIONS
1	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	9.4	1,049
2	Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theoretical and Applied Genetics, 2002, 104, 643-651.	1.8	148
3	Chickpea molecular breeding: New tools and concepts. Euphytica, 2006, 147, 81-103.	0.6	135
4	Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Research, 2009, 111, 130-136.	2.3	108
5	Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theoretical and Applied Genetics, 2006, 112, 278-287.	1.8	107
6	A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0. Theoretical and Applied Genetics, 2005, 110, 1347-1353.	1.8	106
7	A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica, 2010, 175, 175-189.	0.6	101
8	Variability of Some Physico-chemical Characters in Desi and Kabuli Chickpea Types. Journal of the Science of Food and Agriculture, 1996, 71, 179-184.	1.7	72
9	Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Research, 2003, 84, 373-384.	2.3	71
10	A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica, 2006, 149, 105-111.	0.6	70
11	Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a Kabuli�×Desi cross. Annals of Applied Biology, 2007, 151, 33-42.	1.3	69
12	Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). European Journal of Plant Pathology, 2007, 119, 29-37.	0.8	67
13	Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. Ciceris race 0 in chickpea. Plant Breeding, 2003, 122, 188-191.	1.0	59
14	Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). European Journal of Plant Pathology, 2008, 121, 43-53.	0.8	54
15	Ploidic and Molecular Analysis of â€~Morado de Huetor' Asparagus (Asparagus officinale L.) Population; A Spanish Tetraploid Landrace. Genetic Resources and Crop Evolution, 2006, 53, 729-736.	0.8	51
16	Identification of an STMS marker for the double-podding gene in chickpea. Theoretical and Applied Genetics, 2002, 105, 604-607.	1.8	50
17	Effects of the erect/bushy habit, single/double pod and late/early flowering genes on yield and seed size and their stability in chickpea. Field Crops Research, 2004, 90, 255-262.	2.3	50
18	Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions. Agronomy for Sustainable Development, 2003, 23, 359-362.	0.8	48

#	Article	IF	CITATIONS
19	Assessment of genetic diversity and phylogenetic relationships in Asparagus species related to Asparagus officinalis. Genetic Resources and Crop Evolution, 2013, 60, 1275-1288.	0.8	45
20	Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics, 2018, 19, 301.	1.2	40
21	Tagging and mapping a second resistance gene for Fusarium wilt race 0 in chickpea. European Journal of Plant Pathology, 2009, 124, 87-92.	0.8	38
22	Allele-specific amplification for the detection of ascochyta blight resistance in chickpea. Euphytica, 2013, 189, 183-190.	0.6	38
23	Inheritance of Seed Coat Thickness in Chickpea (Cicer arietinum L.) and its Evolutionary Implications. Plant Breeding, 1993, 111, 257-260.	1.0	37
24	Development of chickpea near-isogenic lines for fusarium wilt. Theoretical and Applied Genetics, 2010, 121, 1519-1526.	1.8	37
25	Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTLAR1 implicated in ascochyta blight resistance in chickpea. Plant Cell Reports, 2012, 31, 1033-1042.	2.8	33
26	Effect of the gene for double pod in chickpea on yield, yield components and stability of yield. Plant Breeding, 1998, 117, 585-587.	1.0	29
27	Origin of tetraploid cultivated asparagus landraces inferred from nuclear ribosomal DNA internal transcribed spacers' polymorphisms. Annals of Applied Biology, 2008, 153, 080527111818499-???.	1.3	25
28	Efficiency of marker-assisted selection for ascochyta blight in chickpea. Journal of Agricultural Science, 2015, 153, 56-67.	0.6	25
29	Saponin Profile of Wild Asparagus Species. Journal of Food Science, 2017, 82, 638-646.	1.5	23
30	Development of triploid hybrids in asparagus breeding employing a tetraploid landrace. Euphytica, 2010, 173, 369-375.	0.6	20
31	Introgression of new germplasm in current diploid cultivars of garden asparagus from a tetraploid spanish landrace "Morado de Huétor― Scientia Horticulturae, 2014, 168, 157-160.	1.7	20
32	Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. Theoretical and Applied Genetics, 2014, 127, 481-488.	1.8	19
33	Segmental and Tandem Duplications Driving the Recent NBS-LRR Gene Expansion in the Asparagus Genome. Genes, 2018, 9, 568.	1.0	18
34	Integration of Genetic and Cytogenetic Maps and Identification of Sex Chromosome in Garden Asparagus (Asparagus officinalis L.). Frontiers in Plant Science, 2018, 9, 1068.	1.7	18
35	Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceris race 5. PLoS ONE, 2019, 14, e0224212.	1.1	18
36	Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatula–Uromyces striatus interaction. Theoretical and Applied Genetics, 2010, 121, 1311-1321.	1.8	17

#	Article	IF	CITATIONS
37	Collection and conservation of †Morado de Huetor' Spanish tetraploid asparagus landrace. Genetic Resources and Crop Evolution, 2008, 55, 773-777.	0.8	16
38	A segregation distortion locus located on linkage group 4 of the chickpea genetic map. Euphytica, 2011, 179, 515-523.	0.6	16
39	Physical mapping of 5S and 45S rDNA genes and ploidy levels of Iranian Asparagus species. Scientia Horticulturae, 2016, 211, 269-276.	1.7	16
40	The marker SCK13603 associated with resistance to ascochyta blight in chickpea is located in a region of a putative retrotransposon. Plant Cell Reports, 2009, 28, 53-60.	2.8	15
41	Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Molecular Breeding, 2020, 40, 1.	1.0	14
42	Genotype and environment effects on sensory, nutritional, and physical traits in chickpea (Cicer) Tj ETQq0 0 0 rg	BT/Qverlc	ock,10 Tf 50 5
43	Identification of chickpea cultivars by microsatellite markers. Journal of Agricultural Science, 2011, 149, 451-460.	0.6	7
44	Detection of partial resistance quantitative trait loci against Didymella pinodes in Medicago truncatula. Molecular Breeding, 2014, 33, 589-599.	1.0	7
45	Rapid and Cost-Effective Assessment of the Neutral and Acid Detergent Fiber Fractions of Chickpea (Cicer arietinum L.) by Combining Modified PLS and Visible with Near-Infrared Spectroscopy. Agronomy, 2021, 11, 666.	1.3	7
46	Genetic diversity and phylogenetic analysis in Asian and European Asparagus subgenus species. Genetic Resources and Crop Evolution, 2021, 68, 3115.	0.8	7
47	Short communication. Employment of molecular markers to develop tetraploid "supermale―asparagus from andromonoecious plants of the landrace â€~Morado de Huétor'. Spanish Journal of Agricultural Research, 2014, 12, 1131.	0.3	7
48	Resistance in chickpea (Cicer arietinum) to Fusarium wilt race â€~0'. Plant Breeding, 2009, 129, 563.	1.0	6
49	Development and diversity analysis of an hexaploid pre-breeding asparagus population with introgressions from wild relative species. Scientia Horticulturae, 2021, 287, 110273.	1.7	6
50	The <i>SINGLE FLOWER (SFL)</i> gene encodes a MYB transcription factor that regulates the number of flowers produced by the inflorescence of chickpea. New Phytologist, 2022, 234, 827-836.	3.5	6
51	Pollination by the hoverfly <i>Eristalinus aeneus</i> (Diptera: Syrphidae) in two hybrid seed crops: celery and fennel (Apiaceae). Journal of Agricultural Science, 2022, 160, 194-206.	0.6	4

52	Insertional tagging of regulatory sequences in tritordeum; a hexaploid cereal species. Theoretical and Applied Genetics, 2002, 104, 916-925.	1.8	3
53	Asparagus ploidy distribution related to climates adaptation in Iran. Environment, Development and Sustainability, 0, , 1.	2.7	3

⁵⁴Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. Plants,
2021, 10, 2429.1.63

#	Article	IF	CITATIONS
55	Sort communication. Genotype × environment interaction analysis in two chickpea RIL populations. Spanish Journal of Agricultural Research, 2013, 11, 808.	0.3	1
56	Variation in morphological traits in Phaseolus vulgaris L. from northern Spain. Journal of Agricultural Science, 2003, 140, 435-442.	0.6	0