Yilin Mo

List of Publications by Citations

Source: https://exaly.com/author-pdf/1407350/yilin-mo-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

83
papers

3,885
citations

24
h-index

62
g-index

4,803
ext. papers

4.4
avg, IF

6.08
L-index

#	Paper	IF	Citations
83	Cyber P hysical Security of a Smart Grid Infrastructure. <i>Proceedings of the IEEE</i> , 2012 , 100, 195-209	14.3	557
82	Secure control against replay attacks 2009 ,		365
81	Integrity Data Attacks in Power Market Operations. IEEE Transactions on Smart Grid, 2011 , 2, 659-666	10.7	307
80	Detecting Integrity Attacks on SCADA Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2014 , 22, 1396-1407	4.8	280
79	Physical Authentication of Control Systems: Designing Watermarked Control Inputs to Detect Counterfeit Sensor Outputs. <i>IEEE Control Systems</i> , 2015 , 35, 93-109	2.9	235
78	False Data Injection Attacks in Electricity Markets 2010 ,		223
77	False data injection attacks against state estimation in wireless sensor networks 2010 ,		203
76	On the Performance Degradation of Cyber-Physical Systems Under Stealthy Integrity Attacks. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2618-2624	5.9	177
75	Stochastic Event-Triggered Sensor Schedule for Remote State Estimation. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 2661-2675	5.9	177
74	Privacy Preserving Average Consensus. IEEE Transactions on Automatic Control, 2017, 62, 753-765	5.9	152
73	Sensor selection strategies for state estimation in energy constrained wireless sensor networks. <i>Automatica</i> , 2011 , 47, 1330-1338	5.7	130
72	. IEEE Transactions on Automatic Control, 2015 , 60, 1145-1151	5.9	98
71	Kalman Filtering With Intermittent Observations: Tail Distribution and Critical Value. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 677-689	5.9	83
70	Detection in Adversarial Environments. IEEE Transactions on Automatic Control, 2014, 59, 3209-3223	5.9	66
69	Integrity attacks on cyber-physical systems 2012 ,		61
68	Multi-Sensor Scheduling for State Estimation With Event-Based, Stochastic Triggers. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2695-2701	5.9	60
67	A characterization of the critical value for Kalman filtering with intermittent observations 2008,		50

66	Detecting integrity attacks on control systems using robust physical watermarking 2014 ,		48
65	. IEEE Transactions on Signal Processing, 2014 , 62, 31-43	4.8	42
64	Stochastic Sensor Scheduling for Energy Constrained Estimation in Multi-Hop Wireless Sensor Networks. <i>IEEE Transactions on Automatic Control</i> , 2011 , 56, 2489-2495	5.9	41
63	Attack-Resilient \$mathcal H_2\$, \$mathcal H_infty\$, and \$ell _1\$ State Estimator. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 4353-4360	5.9	29
62	On infinite-horizon sensor scheduling. Systems and Control Letters, 2014, 67, 65-70	2.4	25
61	LQG control with Markovian packet loss 2013 ,		25
60	Secure dynamic state estimation via local estimators 2016 ,		24
59	The Vulnerability of Cyber-Physical System Under Stealthy Attacks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 637-650	5.9	24
58	Penalized Fisher Discriminant Analysis and Its Application to Image-Based Morphometry. <i>Pattern Recognition Letters</i> , 2011 , 32, 2128-2135	4.7	21
57	Privacy Preserving Maximum Consensus 2015 ,		20
57 56	Privacy Preserving Maximum Consensus 2015, Convex Optimization Based State Estimation Against Sparse Integrity Attacks. <i>IEEE Transactions on Automatic Control</i> , 2019, 64, 2383-2395	5.9	19
	Convex Optimization Based State Estimation Against Sparse Integrity Attacks. <i>IEEE Transactions on</i>	5·9 5·9	
56	Convex Optimization Based State Estimation Against Sparse Integrity Attacks. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2383-2395 On Optimal Partial Broadcasting of Wireless Sensor Networks for Kalman Filtering. <i>IEEE</i>		19
56 55	Convex Optimization Based State Estimation Against Sparse Integrity Attacks. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2383-2395 On Optimal Partial Broadcasting of Wireless Sensor Networks for Kalman Filtering. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 715-721 On the Performance Analysis of Reset Attack in Cyber-Physical Systems. <i>IEEE Transactions on</i>	5.9	19
565554	Convex Optimization Based State Estimation Against Sparse Integrity Attacks. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2383-2395 On Optimal Partial Broadcasting of Wireless Sensor Networks for Kalman Filtering. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 715-721 On the Performance Analysis of Reset Attack in Cyber-Physical Systems. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 419-425 Detecting Integrity Attacks on SCADA Systems. <i>IFAC Postprint Volumes IPPV / International</i>	5.9	19 18
56555453	Convex Optimization Based State Estimation Against Sparse Integrity Attacks. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2383-2395 On Optimal Partial Broadcasting of Wireless Sensor Networks for Kalman Filtering. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 715-721 On the Performance Analysis of Reset Attack in Cyber-Physical Systems. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 419-425 Detecting Integrity Attacks on SCADA Systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 11239-11244	5.9	19 18 18
5655545352	Convex Optimization Based State Estimation Against Sparse Integrity Attacks. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2383-2395 On Optimal Partial Broadcasting of Wireless Sensor Networks for Kalman Filtering. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 715-721 On the Performance Analysis of Reset Attack in Cyber-Physical Systems. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 419-425 Detecting Integrity Attacks on SCADA Systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 11239-11244 Sensor scheduling over a packet-delaying network. <i>Automatica</i> , 2011 , 47, 1089-1092	5.9	19 18 18 16

48	Whittle Index Policy for Dynamic Multichannel Allocation in Remote State Estimation. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 591-603	5.9	13
47	Secure Dynamic State Estimation by Decomposing Kalman Filter. IFAC-PapersOnLine, 2017, 50, 7351-73	35 6 .7	12
46	On Stochastic Sensor Network Scheduling for Multiple Processes. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 6633-6640	5.9	11
45	Security in cyber-physical systems: Controller design against Known-Plaintext Attack 2015 ,		11
44	Dynamic state estimation in the presence of compromised sensory data 2015 ,		11
43	Remote State Estimation With Stochastic Event-Triggered Sensor Schedule and Packet Drops. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 4981-4988	5.9	10
42	Modeling impact of attacks, recovery, and attackability conditions for situational awareness 2014,		10
41	An Online Approach to Physical Watermark Design. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 3895-3902	5.9	10
40	Secure State Estimation With Byzantine Sensors: A Probabilistic Approach. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 3742-3757	5.9	9
39	Minimum Robust Sensor Placement for Large Scale Linear Time-Invariant Systems: A Structured Systems Approach*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 417-424		9
38	An Opportunistic Sensor Scheduling Solution to Remote State Estimation Over Multiple Channels. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 4905-4917	4.8	9
37	Optimal DoS attacks on Bayesian quickest change detection 2014 ,		7
36	Infinite-horizon sensor scheduling for estimation over lossy networks 2012,		7
35	Stochastic event-triggered sensor scheduling for remote state estimation 2013,		6
34	Kalman Filtering with Intermittent Observations: Critical Value for Second Order System. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 6592-6597		6
33	A convex optimization approach of multi-step sensor selection under correlated noise 2009,		6
32	A Tutorial on Detecting Security Attacks on Cyber-Physical Systems 2019,		5
31	Multi-dimensional state estimation in adversarial environment 2015,		5

(2021-2020)

30	Distributed Consensus Over Markovian Packet Loss Channels. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 279-286	5.9	5
29	Resilience and Performance Analysis for State Estimation against Integrity Attacks. <i>IFAC-PapersOnLine</i> , 2016 , 49, 55-60	0.7	5
28	Towards a unified resilience analysis: State estimation against integrity attacks 2016,		5
27	. IEEE Transactions on Signal Processing, 2018 , 66, 4450-4460	4.8	5
26	Sequential detection in adversarial environment 2017,		4
25	Secure and privacy preserving average consensus 2017,		4
24	Multi-Sensor Scheduling for State Estimation with Event-Based, Stochastic Triggers*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 15-22		4
23	Network Energy Minimization via Sensor Selection and Topology Control*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 174-179		4
22	Stochastic Event-Based Sensor Schedules for Remote State Estimation in Cognitive Radio Sensor Networks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 2407-2414	5.9	4
21	An On-line Design of Physical Watermarks 2018 ,		4
20	Resilient Control in Cyber-Physical Systems: Countering Uncertainty, Constraints, and Adversarial Behavior. <i>Foundations and Trends in Systems and Control</i> , 2020 , 7, 1-252	4	3
19	An iterative abstraction algorithm for reactive correct-by-construction controller synthesis 2015 ,		3
18	Security for cyber-physical systems: Secure control against known-plaintext attack. <i>Science China Technological Sciences</i> , 2020 , 63, 1637-1646	3.5	3
17	Mean square stabilization of vector LTI systems over power constrained lossy channels 2016,		3
16	Game Theoretical Approach to Sequential Hypothesis Test with Byzantine Sensors 2019,		3
15	Security analysis of continuous-time cyber-physical system against sensor attacks 2017,		2
14	Sensor scheduling for energy constrained estimation in multi-hop Wireless Sensor Networks 2010,		2
13	A Distributed Implementation of Steady-State Kalman Filter 2021 ,		2

12	Stochastic sensor scheduling for multiple dynamical processes over a shared channel 2016,		2
11	Remote State Estimation with Stochastic Event-triggered Sensor Schedule in the Presence of Packet Drops 2019 ,		2
10	Joint Sensor and Actuator Placement for Infinite-Horizon LQG Control. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	:.9	2
9	Active Detection Against Replay Attack: A Survey on Watermark Design for Cyber-Physical Systems. Lecture Notes in Control and Information Sciences, 2021, 145-171	0.5	2
8	2012,		1
7	Communication Complexity and Energy Efficient Consensus Algorithm. <i>IFAC Postprint Volumes IPPV</i> /International Federation of Automatic Control, 2010 , 43, 209-214		1
6	Multiple Hypothesis Testing in Adversarial Environments: A Game-theoretic Approach 2018,		1
5	Secure Static State Estimation: A Large Deviation Approach. <i>IFAC-PapersOnLine</i> , 2018 , 51, 289-294	0.7	1
4	Local Decomposition of Kalman Filters and its Application for Secure State Estimation. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 5037-5044	:.9	1
3	A Bafe KernellApproach for Resilient Multi-Dimensional Consensus. IFAC-PapersOnLine, 2020 , 53, 2507-26	5.1/2	O
2	Distributed Consensus over Markovian Packet Loss Channels. <i>IFAC-PapersOnLine</i> , 2018 , 51, 94-99	0.7	О
1	Secure Detection Using Binary Sensors. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 160-167		