Diego Safian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/140733/publications.pdf Version: 2024-02-01

DIECO SAEIAN

#	Article	IF	CITATIONS
1	Potencial de <i>Tegula atra</i> (Mollusca: Gastropoda) como biorregulador del crecimiento de algas en estanques de cultivo de lenguado <i>Paralichthys adspersus</i> . Revista De Biologia Marina Y Oceanografia, 2021, 55, 217.	0.2	0
2	Insulin-like 3 affects zebrafish spermatogenic cells directly and via Sertoli cells. Communications Biology, 2021, 4, 204.	4.4	11
3	The Fish Family Poeciliidae as a Model to Study the Evolution and Diversification of Regenerative Capacity in Vertebrates. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
4	PGE2 inhibits spermatogonia differentiation in zebrafish: interaction with Fsh and an androgen. Journal of Endocrinology, 2020, 244, 163-175.	2.6	24
5	Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. General and Comparative Endocrinology, 2019, 284, 113244.	1.8	37
6	Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: Follicle-stimulating hormone, retinoic acid and androgens. Development (Cambridge), 2019, 146, .	2.5	13
7	Igf3 activates β-catenin signaling to stimulate spermatogonial differentiation in zebrafish. Journal of Endocrinology, 2018, 238, 245-257.	2.6	27
8	Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatogonia. Journal of Endocrinology, 2018, 239, 351-363.	2.6	20
9	Follicle-Stimulating Hormone Regulates igfbp Gene Expression Directly or via Downstream Effectors to Modulate Igf3 Effects on Zebrafish Spermatogenesis. Frontiers in Endocrinology, 2017, 8, 328.	3.5	22
10	lgf Binding Proteins Protect Undifferentiated Spermatogonia in the Zebrafish Testis Against Excessive Differentiation. Endocrinology, 2016, 157, 4423-4433.	2.8	31
11	Nutritional status modulates plasma leptin, AMPK and TOR activation, and mitochondrial biogenesis: Implications for cell metabolism and growth in skeletal muscle of the fine flounder. General and Comparative Endocrinology, 2013, 186, 172-180.	1.8	69
12	Isolation and selection of suitable reference genes for real-time PCR analyses in the skeletal muscle of the fine flounder in response to nutritional status: assessment and normalization of gene expression of growth-related genes. Fish Physiology and Biochemistry, 2013, 39, 765-777.	2.3	12
13	Dynamic transcriptional regulation of autocrine/paracrine igfbp1, 2, 3, 4, 5, and 6 in the skeletal muscle of the fine flounder during different nutritional statuses. Journal of Endocrinology, 2012, 214, 95-108.	2.6	61
14	Molecular cloning of IGF-1 and IGF-1 receptor and their expression pattern in the Chilean flounder (Paralichthys adspersus). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2011, 159, 140-147.	1.6	30