
Xiao-Tao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407329/publications.pdf Version: 2024-02-01

Χιλο-Τλο \λ/μ

#	Article	IF	CITATIONS
1	Unfolded protein response alleviates acidâ€induced premature senescence by promoting autophagy in nucleus pulposus cells. Cell Biology International, 2022, 46, 568-578.	3.0	5
2	Small extracellular vesicles from hypoxic mesenchymal stem cells alleviate intervertebral disc degeneration by delivering miR-17-5p. Acta Biomaterialia, 2022, 140, 641-658.	8.3	18
3	Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA and Cell Biology, 2022, 41, 469-478.	1.9	1
4	GATA4 promotes the senescence of nucleus pulposus cells via NF-κB pathway. Archives of Gerontology and Geriatrics, 2022, 101, 104676.	3.0	5
5	Radiological risk factors for recurrent lumbar disc herniation after percutaneous transforaminal endoscopic discectomy: a retrospective matched case-control study. European Spine Journal, 2021, 30, 886-892.	2.2	30
6	Which Criterion for Wound Drain Removal is Better Following Posterior 1-Level or 2-Level Lumbar Fusion With Instrumentation: Time Driven or Output Driven?. Global Spine Journal, 2021, , 219256822110137.	2.3	3
7	Oneâ€Stage Percutaneous Endoscopic Lumbar Discectomy for Symptomatic Double‣evel Contiguous Adolescent Lumbar Disc Herniation. Orthopaedic Surgery, 2021, 13, 1532-1539.	1.8	3
8	Risk Factors for Increased Surgical Drain Output After Transforaminal Lumbar Interbody Fusion. World Neurosurgery, 2021, 151, e1044-e1050.	1.3	1
9	The use of incisional vacuum-assisted closure system following one-stage incision suture combined with continuous irrigation to treat early deep surgical site infection after posterior lumbar fusion with instrumentation. Journal of Orthopaedic Surgery and Research, 2021, 16, 445.	2.3	5
10	A Novel Technique for Treating Early Deep Surgical Site Infection After Posterior Lumbar Fusion with Instrumentation. World Neurosurgery, 2021, 156, e167-e174.	1.3	3
11	The accuracy of a novel pedicle screw insertion technique assisted by a special angular scale in the subaxial cervical spine using lateral mass as a reference marker. Journal of Orthopaedic Surgery and Research, 2020, 15, 551.	2.3	3
12	A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment. Bone and Joint Research, 2020, 9, 225-235.	3.6	12
13	Survival analysis of patients with spinal chordomas. Neurosurgical Review, 2019, 42, 455-462.	2.4	7
14	A histocytological and radiological overview of the natural history of intervertebral disk: from embryonic formation to age-related degeneration. European Spine Journal, 2019, 28, 633-648.	2.2	3
15	Nuclear factorâ€kappa Bâ€dependent Xâ€box binding protein 1 signalling promotes the proliferation of nucleus pulposus cells under tumour necrosis factor alpha stimulation. Cell Proliferation, 2019, 52, e12542.	5.3	18
16	Comparison of percutaneous endoscopic lumbar discectomy versus microendoscopic discectomy for the treatment of lumbar disc herniation: a meta-analysis. International Orthopaedics, 2019, 43, 923-937.	1.9	40
17	Protein kinase RNAâ€like ER kinase/eukaryotic translation initiation factor 2α pathway attenuates tumor necrosis factor alphaâ€induced apoptosis in nucleus pulposus cells by activating autophagy . Journal of Cellular Physiology, 2019, 234, 11631-11645.	4.1	14
18	ASIC1a activation induces calcium-dependent apoptosis of BMSCs under conditions that mimic the acidic microenvironment of the degenerated intervertebral disc. Bioscience Reports, 2019, 39, .	2.4	22

XIAO-TAO WU

#	Article	IF	CITATIONS
19	Acid-Sensing Ion Channel 1a Regulates Fate of Rat Nucleus Pulposus Cells in Acid Stimulus Through Endoplasmic Reticulum Stress. BioResearch Open Access, 2018, 7, 2-9.	2.6	10
20	Endoplasmic Reticulum Stress Facilitates the Survival and Proliferation of Nucleus Pulposus Cells in TNF-1± Stimulus by Activating Unfolded Protein Response. DNA and Cell Biology, 2018, 37, 347-358.	1.9	26
21	Preclinical development of a microRNA-based therapy for intervertebral disc degeneration. Nature Communications, 2018, 9, 5051.	12.8	171
22	Lumbar disc herniation treated by microendoscopic discectomy. Der Orthopade, 2018, 47, 993-1002.	1.6	17
23	Endoplasmic Reticulum Stress Is Involved in Nucleus Pulposus Degeneration and Attenuates Low pH-Induced Apoptosis of Rat Nucleus Pulposus Cells. DNA and Cell Biology, 2017, 36, 627-637.	1.9	21
24	The Paracrine Effect of Degenerated Disc Cells on Healthy Human Nucleus Pulposus Cells Is Mediated by MAPK and NF-1ºB Pathways and Can Be Reduced by TGF-1º1. DNA and Cell Biology, 2017, 36, 143-158.	1.9	31
25	Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation. Oncotarget, 2017, 8, 57800-57812.	1.8	23
26	Resveratrol attenuated TNF-α–induced MMP-3 expression in human nucleus pulposus cells by activating autophagy via AMPK/SIRT1 signaling pathway. Experimental Biology and Medicine, 2016, 241, 848-853.	2.4	80
27	The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats. European Spine Journal, 2015, 24, 2411-2424.	2.2	25
28	Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Experimental Biology and Medicine, 2015, 240, 411-417.	2.4	39
29	Stem Cell Approaches to Intervertebral Disc Regeneration: Obstacles from the Disc Microenvironment. Stem Cells and Development, 2015, 24, 2479-2495.	2.1	57
30	Endoscopy-assisted posterior lumbar interbody fusion in a single segment. Journal of Clinical Neuroscience, 2014, 21, 287-292.	1.5	16