Zhiyong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO ₃ Perovskites. Journal of the American Chemical Society, 2016, 138, 2488-2491.	13.7	310
2	Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. International Journal of Hydrogen Energy, 2011, 36, 12686-12697.	7.1	288
3	Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc–Air Battery with Neutral Aqueous Electrolyte. Journal of the American Chemical Society, 2018, 140, 17624-17631.	13.7	258
4	Mesoporous Prussian Blue Analogues: Templateâ€Free Synthesis and Sodiumâ€Ion Battery Applications. Angewandte Chemie - International Edition, 2014, 53, 3134-3137.	13.8	253
5	Identification of Active Hydrogen Species on Palladium Nanoparticles for an Enhanced Electrocatalytic Hydrodechlorination of 2,4-Dichlorophenol in Water. Environmental Science & Technology, 2017, 51, 7599-7605.	10.0	249
6	The Spatially Oriented Charge Flow and Photocatalysis Mechanism on Internal van der Waals Heterostructures Enhanced g-C ₃ N ₄ . ACS Catalysis, 2018, 8, 8376-8385.	11.2	219
7	Rational Design of Bi Nanoparticles for Efficient Electrochemical CO ₂ Reduction: The Elucidation of Size and Surface Condition Effects. ACS Catalysis, 2016, 6, 6255-6264.	11.2	212
8	Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy, 2017, 39, 647-653.	16.0	204
9	Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: Cogeneration of electricity and valuable chemicals. Applied Catalysis B: Environmental, 2012, 119-120, 40-48.	20.2	194
10	Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nature Catalysis, 2021, 4, 36-45.	34.4	189
11	Phosphate-Functionalized CeO ₂ Nanosheets for Efficient Catalytic Oxidation of Dichloromethane. Environmental Science & amp; Technology, 2018, 52, 13430-13437.	10.0	128
12	Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors. Applied Catalysis B: Environmental, 2012, 125, 85-94.	20.2	119
13	Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochimica Acta, 2010, 55, 4217-4221.	5.2	116
14	Bimetallic Composition-Promoted Electrocatalytic Hydrodechlorination Reaction on Silver–Palladium Alloy Nanoparticles. ACS Catalysis, 2019, 9, 10803-10811.	11.2	115
15	Electricity Storage in Biofuels: Selective Electrocatalytic Reduction of Levulinic Acid to Valeric Acid or γâ€Valerolactone. ChemSusChem, 2013, 6, 674-686.	6.8	107
16	Preparation and Characterization of PdFe Nanoleaves as Electrocatalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2011, 23, 1570-1577.	6.7	106
17	Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chemical Engineering Journal, 2018, 348, 26-34.	12.7	104
18	Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC). International Journal of Hydrogen Energy, 2012, 37, 9393-9401.	7.1	100

ZHIYONG ZHANG

#	Article	IF	CITATIONS
19	Updating Biomass into Functional Carbon Material in Ionothermal Manner. ACS Applied Materials & Interfaces, 2014, 6, 12515-12522.	8.0	98
20	Self-Templating Synthesis of Cobalt Hexacyanoferrate Hollow Structures with Superior Performance for Na-Ion Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 29496-29504.	8.0	87
21	Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels. Applied Catalysis B: Environmental, 2013, 136-137, 29-39.	20.2	85
22	Mesoporous graphene-like carbon sheet: high-power supercapacitor and outstanding catalyst support. Journal of Materials Chemistry A, 2014, 2, 12262-12269.	10.3	85
23	Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation. Chinese Chemical Letters, 2018, 29, 805-810.	9.0	80
24	Generalized Synthetic Strategy for Transition-Metal-Doped Brookite-Phase TiO ₂ Nanorods. Journal of the American Chemical Society, 2019, 141, 16548-16552.	13.7	78
25	Facile synthesis of cobalt hexacyanoferrate/graphene nanocomposites for high-performance supercapacitor. Electrochimica Acta, 2017, 235, 114-121.	5.2	77
26	Surface dealloyed PtCo nanoparticles supported on carbon nanotube: facile synthesis and promising application for anion exchange membrane direct crude glycerol fuel cell. Green Chemistry, 2013, 15, 1133.	9.0	71
27	Simultaneous Generation of Mesoxalic Acid and Electricity from Glycerol on a Gold Anode Catalyst in Anionâ€Exchange Membrane Fuel Cells. ChemCatChem, 2012, 4, 1105-1114.	3.7	70
28	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	9.1	68
29	Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor. Applied Catalysis B: Environmental, 2014, 147, 871-878.	20.2	66
30	Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion. Journal of the American Chemical Society, 2020, 142, 8490-8497.	13.7	65
31	Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst. Green Chemistry, 2012, 14, 2150.	9.0	61
32	Hierarchically Superstructured Prussian Blue Analogues: Spontaneous Assembly Synthesis and Applications as Pseudocapacitive Materials. ChemSusChem, 2015, 8, 177-183.	6.8	54
33	Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells. Nanotechnology, 2011, 22, 015602.	2.6	50
34	lonic liquid derived carbons as highly efficient oxygen reduction catalysts: first elucidation of pore size distribution dependent kinetics. Chemical Communications, 2014, 50, 1469-1471.	4.1	49
35	Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells. Renewable Energy, 2014, 62, 556-562.	8.9	46
36	22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cationâ€Doped Brookite TiO ₂ Top Buffer. Advanced Science, 2020, 7, 2001285.	11.2	43

ZHIYONG ZHANG

#	Article	IF	CITATIONS
37	Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell. Frontiers in Chemistry, 2013, 1, 16.	3.6	37
38	Calcium Sulfate Hemihydrate Nanowires: One Robust Material in Separation of Water from Water-in-Oil Emulsion. Environmental Science & Technology, 2017, 51, 10519-10525.	10.0	37
39	AgPd nanoparticles for electrocatalytic CO ₂ reduction: bimetallic composition-dependent ligand and ensemble effects. Nanoscale, 2020, 12, 14068-14075.	5.6	36
40	Thermo-mechanical coupled 3D-FE modeling of heat rotary draw bending for large-diameter thin-walled CP-Ti tube. International Journal of Advanced Manufacturing Technology, 2014, 72, 1187-1203.	3.0	29
41	MgAl layered double oxide: One powerful sweeper of emulsified water and acid for oil purification. Journal of Hazardous Materials, 2019, 367, 658-667.	12.4	28
42	Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation. Carbon, 2015, 93, 39-47.	10.3	27
43	Revealing structural evolution of PbS nanocrystal catalysts in electrochemical CO ₂ reduction using <i>in situ</i> synchrotron radiation X-ray diffraction. Journal of Materials Chemistry A, 2019, 7, 23775-23780.	10.3	24
44	Electrocatalytic reduction of furfural with high selectivity to furfuryl alcohol using AgPd alloy nanoparticles. Nanoscale, 2021, 13, 2312-2316.	5.6	17
45	Facile synthesis of Mesoporouscobalt Hexacyanoferrate Nanocubes for High-Performance Supercapacitors. Nanomaterials, 2017, 7, 228.	4.1	14
46	Experimental and numerical studies on the prediction of bendability limit of QSTE340 welded tube in NC bending process. Science China Technological Sciences, 2012, 55, 2264-2277.	4.0	4
47	Weld characteristics and NC bending formability of QSTE340 welded tube. Transactions of Tianjin University, 2011, 17, 288-292.	6.4	2