Wei Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406993/publications.pdf

Version: 2024-02-01

		136950	197818
102	3,048	32	49
papers	citations	h-index	g-index
107	107	107	2963
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	One-pot cascade synthesis of N-methoxyisoquinolinediones via Rh(<scp>iii</scp>)-catalyzed carbenoid insertion Câ€"H activation/cyclization. Chemical Communications, 2015, 51, 668-671.	4.1	110
2	Rhodium(iii)-catalyzed C2-selective carbenoid functionalization and subsequent C7-alkenylation of indoles. Chemical Communications, 2014, 50, 6483.	4.1	109
3	1-(1-Arylethylidene)thiosemicarbazide derivatives: A new class of tyrosinase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 1096-1102.	3.0	91
4	Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. European Journal of Medicinal Chemistry, 2010, 45, 639-646.	5.5	88
5	Rhodium(<scp>iii</scp>)-catalyzed C–H activation and intermolecular annulation with terminal alkynes: from indoles to carbazoles. Chemical Communications, 2015, 51, 2925-2928.	4.1	83
6	Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities. European Journal of Medicinal Chemistry, 2009, 44, 4235-4243.	5.5	81
7	Rhodium(III)â€Catalyzed Enantio―and Diastereoselective Câ^'H Cyclopropylation of Nâ€Phenoxylsulfonamides: Combined Experimental and Computational Studies. Angewandte Chemie - International Edition, 2020, 59, 2890-2896.	13.8	80
8	Direct Synthesis of Quinolines via Co(III)-Catalyzed and DMSO-Involved C–H Activation/Cyclization of Anilines with Alkynes. Organic Letters, 2018, 20, 566-569.	4.6	79
9	Rh(III)-Catalyzed and Solvent-Controlled Chemoselective Synthesis of Chalcone and Benzofuran Frameworks via Synergistic Dual Directing Groups Enabled Regioselective C–H Functionalization: A Combined Experimental and Computational Study. ACS Catalysis, 2018, 8, 9508-9519.	11.2	77
10	Structures and mechanism for the design of highly potent glucocorticoids. Cell Research, 2014, 24, 713-726.	12.0	76
11	Mild and Efficient Ir(III)-Catalyzed Direct C–H Alkynylation of N-Phenoxyacetamides with Terminal Alkyne. ACS Catalysis, 2015, 5, 6999-7003.	11.2	75
12	Rhodium(III)â€Catalyzed Regioselective Direct Câ€2 Alkenylation of Indoles Assisted by the Removable Nâ€(2â€Pyrimidyl) Group. Advanced Synthesis and Catalysis, 2014, 356, 137-143.	4.3	67
13	Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. European Journal of Medicinal Chemistry, 2011, 46, 4330-4335.	5.5	66
14	Rh(<scp>iii</scp>)-catalyzed and alcohol-involved carbenoid C–H insertion into N-phenoxyacetamides using α-diazomalonates. Chemical Communications, 2015, 51, 5868-5871.	4.1	63
15	HOTf-catalyzed sustainable one-pot synthesis of benzene and pyridine derivatives under solvent-free conditions. Green Chemistry, 2016, 18, 2313-2316.	9.0	60
16	Catalyst-Controlled $[3 + 2]$ and $[4 + 2]$ Annulations of Oximes with Propargyl Alcohols: Divergent Access to Indenamines and Isoquinolines. Organic Letters, 2018, 20, 182-185.	4.6	60
17	A class of potent tyrosinase inhibitors: Alkylidenethiosemicarbazide compounds. European Journal of Medicinal Chemistry, 2009, 44, 1773-1778.	5.5	57
18	<i>gem</i> å€Difluoromethylene Alkyneâ€Enabled Diverse Câ^'H Functionalization and Application to the onâ€DNA Synthesis of Difluorinated Isocoumarins. Angewandte Chemie - International Edition, 2021, 60, 1959-1966.	13.8	55

#	Article	IF	CITATIONS
19	Synthesis and evaluation of 5-benzylidene(thio)barbiturate-β-d-glycosides as mushroom tyrosinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4055-4058.	2.2	48
20	Design, Synthesis and Biological Evaluation of Hydroxy- or Methoxy-Substituted Phenylmethylenethiosemicarbazones as Tyrosinase Inhibitors. Chemical and Pharmaceutical Bulletin, 2009, 57, 1273-1277.	1.3	48
21	Hydroxyl Groupâ€Prompted and Iridium(III)â€Catalyzed Regioselective Câ^H Annulation of ⟨i>N⟨ i>â€phenoxyacetamides with Propargyl Alcohols. Advanced Synthesis and Catalysis, 2018, 360, 2470-2475.	4.3	48
22	Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Research, 2021, 31, 593-596.	12.0	48
23	Synthesis, cytotoxic activities and DNA binding properties of \hat{l}^2 -carboline derivatives. European Journal of Medicinal Chemistry, 2010, 45, 4740-4745.	5.5	43
24	Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted 5-benzylidene(thio) barbiturates as novel tyrosinase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 3279-3284.	3.0	43
25	Iridium(III)â€Catalyzed Regioselective Carbenoid Insertion C–H Alkylation by αâ€Diazotized Meldrum's Acid. European Journal of Organic Chemistry, 2016, 2016, 5637-5641.	2.4	42
26	Development of highly potent glucocorticoids for steroid-resistant severe asthma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6932-6937.	7.1	40
27	Biological evaluations of novel vitamin C esters as mushroom tyrosinase inhibitors and antioxidants. Food Chemistry, 2009, 117, 381-386.	8.2	39
28	Rhodium(iii)-catalyzed regioselective C2-amidation of indoles with N-(2,4,6-trichlorobenzoyloxy)amides and its synthetic application to the development of a novel potential PPAR \hat{I}^3 modulator. Organic and Biomolecular Chemistry, 2014, 12, 6831-6836.	2.8	38
29	2 <i>H</i> -Chromene-3-carboxylic Acid Synthesis via Solvent-Controlled and Rhodium(III)-Catalyzed Redox-Neutral C–H Activation/[3 + 3] Annulation Cascade. Organic Letters, 2018, 20, 3892-3896.	4.6	37
30	Synthesis and biological evaluation of helicid analogues as mushroom tyrosinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6490-6493.	2.2	36
31	Regioselective Synthesis of 2,3,4-Trisubstituted Pyrroles via Pd(II)-Catalyzed Three-Component Cascade Reactions of Amines, Alkyne Esters, and Alkenes. Organic Letters, 2016, 18, 4864-4867.	4.6	36
32	Stereoselective $\hat{1}^2\hat{a}$ "F Elimination Enabled Redox-Neutral [4 + 1] Annulation via Rh(III)-Catalyzed C \hat{a} "H Activation: Access to Z-Monofluoroalkenyl Dihydrobenzo[d]isoxazole Framework. Organic Letters, 2019, 21, 5229-5233.	4.6	36
33	The one-pot synthesis of quinolines via Co(<scp>iii</scp>)-catalyzed C–H activation/carbonylation/cyclization of anilines. Organic and Biomolecular Chemistry, 2017, 15, 9061-9065.	2.8	34
34	Chiral Allylic Amine Synthesis Enabled by the Enantioselective Cp $<$ sup $>$ X $<$ /sup $>$ Rh(III)-Catalyzed Carboaminations of 1,3-Dienes. ACS Catalysis, 2021, 11, 2279-2287.	11.2	33
35	Synthesis of 4-[(diethylamino)methyl]-phenol derivatives as novel cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3254-3258.	2.2	32
36	Divergent Synthesis of Quinolones and Dihydroepindolidiones via Cu(I)-Catalyzed Cyclization of Anilines with Alkynes. Organic Letters, 2018, 20, 1893-1897.	4.6	31

#	Article	IF	CITATIONS
37	Synthesis and cytotoxic activities of 1-benzylidine substituted \hat{l}^2 -carboline derivatives. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6558-6561.	2.2	30
38	Study on the design, synthesis and structure-activity relationships of new thiosemicarbazone compounds as tyrosinase inhibitors. European Journal of Medicinal Chemistry, 2017, 139, 815-825.	5.5	30
39	Structure-based modification of 3-/4-aminoacetophenones giving a profound change of activity on tyrosinase: From potent activators to highly efficient inhibitors. European Journal of Medicinal Chemistry, 2015, 93, 255-262.	5.5	29
40	Rh(III)-Catalyzed Oxidative $[5 + 2]$ Annulation Using Two Transient Assisting Groups: Stereospecific Assembly of 3-Alkenylated Benzoxepine Framework. Organic Letters, 2018, 20, 6812-6816.	4.6	29
41	Synthesis of Indenopyrazole Frameworks via Cascade C–H Functionalization/[3 + 2] Dipolar Cycloaddition/Aromatization Rearrangement Reactions. Organic Letters, 2020, 22, 7152-7157.	4.6	29
42	Exploring the Interaction of N/S Compounds with a Dicopper Center: Tyrosinase Inhibition and Model Studies. Inorganic Chemistry, 2014, 53, 12848-12858.	4.0	28
43	Chemodivergent Couplings of <i>N</i> -Arylureas and Methyleneoxetanones via Rh(III)-Catalyzed and Solvent-Controlled C–H Activation. Organic Letters, 2019, 21, 4143-4147.	4.6	27
44	<i>Gem</i> -Difluorocyclopropenes as Versatile \hat{l}^2 -Monofluorinated Three-sp ² Carbon Sources for Cp*Rh(III)-Catalyzed [4 + 3] Annulation: Experimental Development and Mechanistic Insight. ACS Catalysis, 2021, 11, 14694-14701.	11.2	27
45	Cobalt(III)â€Catalyzed, DMSOâ€Involved, and TFAâ€Controlled Regioselective Câ^'H Functionalization of Anilines with Alkynes for Specific Assembly of 3â€Arylquinolines. Advanced Synthesis and Catalysis, 2019, 361, 3002-3007.	4.3	26
46	Rational design, synthesis and structure–activity relationships of 4-alkoxy- and 4-acyloxy-phenylethylenethiosemicarbazone analogues as novel tyrosinase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 924-931.	3.0	25
47	Redox-Neutral [4 + 2] Annulation of $\langle i \rangle N \langle i \rangle$ -Methoxybenzamides with Alkynes Enabled by an Osmium(II)/HOAc Catalytic System. Organic Letters, 2019, 21, 9904-9908.	4.6	25
48	Perspective: COVID-19, implications of nasal diseases and consequences for their management. Journal of Allergy and Clinical Immunology, 2020, 146, 67-69.	2.9	25
49	Synthesis and cytotoxic evaluation of 1-carboxamide and 1-amino side chain substituted \hat{l}^2 -carbolines. European Journal of Medicinal Chemistry, 2010, 45, 5513-5519.	5.5	23
50	Urolithin A protects against acetaminophen-induced liver injury in mice via sustained activation of Nrf2. International Journal of Biological Sciences, 2022, 18, 2146-2162.	6.4	21
51	One-pot regioselective synthesis of 2,4-disubstituted quinolines <i>via</i> copper(<scp>ii</scp>)-catalyzed cascade annulation. Organic Chemistry Frontiers, 2018, 5, 1713-1718.	4.5	20
52	Rhodium(<scp>iii</scp>)-catalyzed chemoselective Câ€"H functionalization of benzamides with methyleneoxetanones controlled by the solvent. Organic and Biomolecular Chemistry, 2019, 17, 6114-6118.	2.8	20
53	Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors. Bioorganic and Medicinal Chemistry, 2021, 29, 115870.	3.0	20
54	Chemo-, Regio-, and Stereoselective Assembly of Polysubstituted Furan-2(5⟨i⟩H⟨/i⟩)-ones Enabled by Rh(III)-Catalyzed Domino Câ€"H Alkenylation/Directing Group Migration/Lactonization: A Combined Experimental and Computational Study. ACS Catalysis, 2021, 11, 13921-13934.	11.2	20

#	Article	IF	CITATIONS
55	Rhodium(III)â€Catalyzed Enantio―and Diastereoselective Câ°'H Cyclopropylation of Nâ€Phenoxylsulfonamides: Combined Experimental and Computational Studies. Angewandte Chemie, 2020, 132, 2912-2918.	2.0	19
56	Enantioselective synthesis of indenopyrazolopyrazolones enabled by dual directing groups-assisted and rhodium(III)-catalyzed tandem C-H alkenylation/[3Â+Â2] stepwise cycloaddition. Chinese Chemical Letters, 2022, 33, 842-846.	9.0	19
57	Discovery of 4-functionalized phenyl-O- \hat{l}^2 -d-glycosides as a new class of mushroom tyrosinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6157-6160.	2.2	18
58	Rational Design and Synthesis of 4-O-Substituted Phenylmethylenethiosemicarbazones as Novel Tyrosinase Inhibitors. Chemical and Pharmaceutical Bulletin, 2010, 58, 752-754.	1.3	18
59	One-pot synthesis of 2,3-difunctionalized indoles via Rh(<scp>iii</scp>)-catalyzed carbenoid insertion Câ€"H activation/cyclization. Organic and Biomolecular Chemistry, 2017, 15, 8054-8058.	2.8	18
60	Lossen Rearrangement vs C–N Reductive Elimination Enabled by Rh(III)-Catalyzed C–H Activation/Selective Lactone Ring-Opening: Chemodivergent Synthesis of Quinolinones and Dihydroisoquinolinones. Organic Letters, 2020, 22, 9677-9682.	4.6	18
61	Cobalt(III)â€Catalyzed and Dimethyl Sulfoxideâ€Involved Crossâ€Coupling of Ketones and Amides for Direct Synthesis of <i>β</i> â€Amino Ketones. Advanced Synthesis and Catalysis, 2019, 361, 4278-4285.	4.3	17
62	Rh(III)â€Catalyzed Redoxâ€Neutral [4+2] Annulation for Direct Assembly of 3â€Acyl Isoquinolinâ€1 (2 <i>H</i>)â€ones as Potent Antitumor Agents. ChemPlusChem, 2020, 85, 405-410.	2.8	16
63	Rh(III)-Catalyzed C–H Activation/[3 + 2] Annulation of <i>N</i> Phenoxyacetamides via Carbooxygenation of 1,3-Dienes. Organic Letters, 2021, 23, 3844-3849.	4.6	16
64	Synergistic Dual Directing Groups-Enabled Diastereoselective C–H Cyclopropylation via Rh(III)-Catalyzed Couplings with Cyclopropenyl Alcohols. Organic Letters, 2020, 22, 1295-1300.	4.6	16
65	Synthesis and cytotoxic evaluation of N2-benzylated quaternary \hat{l}^2 -carboline amino acid ester conjugates. European Journal of Medicinal Chemistry, 2010, 45, 1515-1523.	5. 5	15
66	Identification of a novel selective PPAR $\hat{1}^3$ ligand with a unique binding mode and improved therapeutic profile in vitro. Scientific Reports, 2017, 7, 41487.	3.3	15
67	Identification and structural insight of an effective PPAR \hat{I}^3 modulator with improved therapeutic index for anti-diabetic drug discovery. Chemical Science, 2020, 11, 2260-2268.	7.4	15
68	Synthesis of 2-aminobenzofurans $\langle i \rangle via \langle i \rangle$ base-mediated [3 + 2] annulation of $\langle i \rangle N \langle i \rangle$ -phenoxy amides with $\langle i \rangle gem \langle i \rangle$ -difluoroalkenes. Organic Chemistry Frontiers, 2021, 8, 4452-4458.	4.5	15
69	A new and efficient ZnCl2-catalyzed synthesis and biological evaluation of novel 2-amino-3,5-dicyano-4-aryl-6-aryl-aminopyridines as potent antibacterial agents against Helicobacter pylori (HP). Tetrahedron, 2015, 71, 8628-8636.	1.9	14
70	Ru(<scp>ii</scp>)-Catalyzed and acidity-controlled tunable [5+1]/[5+2] annulation for building ring-fused quinazolines and 1,3-benzodiazepines. Chemical Communications, 2020, 56, 11315-11318.	4.1	14
71	Experimental and Computational Studies on Cp* ^{Cy} Rh(III)/KOPiv-Catalyzed Intramolecular Dehydrogenative Cross-Couplings for Building Eight-Membered Sultam/Lactam Frameworks. Organic Letters, 2020, 22, 5473-5478.	4.6	14
72	Oneâ€Pot Synthesis of 3â€lminoisoindolinones by a Rhodium(III)â€Catalyzed and Methanolâ€Assisted Câ°'H Cyanationâ€"Cyclization Cascade with <i>N</i> â€Alkoxyl Transfer. Asian Journal of Organic Chemistry, 2015, 4, 1250-1253.	2.7	13

#	Article	IF	CITATIONS
73	Synthesis of Difluorinated Dihydrobenzo[<i>de</i>]chromenes via Rh(III)â€Catalysed Câ€H Couplings of 1â€Naphthols with <i>Gem</i> â€Difluoromethylene Alkynes. Advanced Synthesis and Catalysis, 2021, 363, 1352-1357.	4.3	13
74	Rhodium(<scp>iii</scp>)-catalyzed and MeOH-involved regioselective mono-alkenylation of N-arylureas with acrylates. Organic and Biomolecular Chemistry, 2017, 15, 7088-7092.	2.8	12
75	Cobalt-Catalyzed Allylation of Amides with Styrenes Using DMSO as Both the Solvent and the α-Methylene Source. Organic Letters, 2019, 21, 7248-7253.	4.6	12
76	Rh($<$ scp $>$ iii $<$ /scp $>$)-Catalyzed and synergistic dual directing group-enabled redox-neutral [3+3] annulation of $<$ i>N $<$ i>phenoxyacetamides with Î \pm -allenols. Chemical Communications, 2021, 57, 9284-9287.	4.1	12
77	Synthesis and Evaluation of Novel Ligustrazine Derivatives as Multi-Targeted Inhibitors for the Treatment of Alzheimer's Disease. Molecules, 2018, 23, 2540.	3.8	11
78	Rh(III)-Catalyzed Redox-Neutral Câ \in "H Activation/[3 + 2] Annulation of <i>N</i> -Phenoxy Amides with Propargylic Monofluoroalkynes. Organic Letters, 2021, 23, 2285-2291.	4.6	10
79	Chemodivergent assembly of ortho-functionalized phenols with tunable selectivity via rhodium(III)-catalyzed and solvent-controlled C-H activation. Communications Chemistry, 2021, 4, .	4.5	10
80	VSP-17, a New PPAR \hat{I}^3 Agonist, Suppresses the Metastasis of Triple-Negative Breast Cancer via Upregulating the Expression of E-Cadherin. Molecules, 2018, 23, 121.	3.8	9
81	Rh(III)-Catalyzed C–H Activation/Cycloisomerization of <i>N</i> Phenoxyacetamides with Enynones for One-Pot Assembly of Furylated 2-Alkenylphenols. Journal of Organic Chemistry, 2019, 84, 15557-15566.	3.2	9
82	Rh(III)-Catalyzed Chemoselective C–H Alkenylation and [5 + 1] Annulation with <i>Gem</i> -Difluoromethylene Enabled by the Distinctive Fluorine Effect. Journal of Organic Chemistry, 2021, 86, 9711-9722.	3.2	9
83	Discovery of a highly potent glucocorticoid for asthma treatment. Cell Discovery, 2015, 1, .	6.7	8
84	<i>gem</i> å€Difluoromethylene Alkyneå€Enabled Diverse Câ°'H Functionalization and Application to the onâ€DNA Synthesis of Difluorinated Isocoumarins. Angewandte Chemie, 2021, 133, 1987-1994.	2.0	8
85	Direct Assembly of Phthalides via Calcium(II)-Catalyzed Cascade <i>ortho</i> -C-Alkenylation/Hydroacyloxylation of 3-Aminobenzoic Acids with Alkynes in Hexafluoroisopropanol. Organic Letters, 2022, 24, 1575-1580.	4.6	8
86	Rh(III)-catalyzed direct C–H cyanation of N-methoxybenzamides using N-cyano-N-phenyl-p-toluenesulfonamide. Chinese Journal of Catalysis, 2015, 36, 1175-1182.	14.0	7
87	Bran-New Four-Molecule and Five-Molecule Cascade Reactions for One-Pot Synthesis of Pyrano[3,2- <i>c< i> c< i> chromen-5-ones and Spiro[benzo[<i>b< i> [1,4]diazepine-2,2′-pyrano[3,2-<i>c< i> c< i> chromen]-5′-ones under Catalyst- and Solvent-Free Conditions. ACS Omega. 2018. 3, 13494-13502.</i></i></i>	3.5	7
88	Metalâ€Free [3,3]â€Sigmatropic Rearrangement/[3+2] Annulation Cascade of N â€Phenoxy Amides with Terminal Alkynes for the Diastereoselective Synthesis of trans â€Dihydrobenzofurans. Advanced Synthesis and Catalysis, 2019, 361, 3980-3985.	4.3	7
89	4,4′-Dimethoxychalcone regulates redox homeostasis by targeting riboflavin metabolism in Parkinson's disease therapy. Free Radical Biology and Medicine, 2021, 174, 40-56.	2.9	7
90	Identification of the anti-fungal drug fenticonazole nitrate as a novel PPARγ-modulating ligand with good therapeutic index: Structure-based screening and biological validation. Pharmacological Research, 2021, 173, 105860.	7.1	7

#	Article	IF	CITATIONS
91	EGCG Inhibits Proliferation and Induces Apoptosis Through Downregulation of SIRT1 in Nasopharyngeal Carcinoma Cells. Frontiers in Nutrition, 2022, 9, 851972.	3.7	7
92	One-pot synthesis of 2,4-disubstituted quinolines via silver-catalyzed three-component cascade annulation of amines, alkyne esters and terminal alkynes. Tetrahedron Letters, 2019, 60, 965-970.	1.4	6
93	Rhodium(III)â€Catalyzed Cascade Câ°'H Coupling/Câ€Terminus Michael Addition of <i>N</i> à€Phenoxy Amides with 1,6â€Enynes. ChemistrySelect, 2021, 6, 6574-6578.	1.5	5
94	Mechanistic Insights into the Dual Directing Group-Mediated C–H Functionalization/Annulation ⟨i⟩via⟨i⟩ a Hydroxyl Group-Assisted M⟨sup⟩III⟨/sup⟩-M⟨sup⟩V⟨/sup⟩-M⟨sup⟩III⟨/sup⟩ Pathway. ACS Omega, 2021, 6, 17642-17650.	3. 5	5
95	TFAâ€Prompted/Rh(III)â€Catalysed Chemoselective C3―or C2â€H Functionalization of Indoles with Methylenecyclopropanes. European Journal of Organic Chemistry, 2021, 2021, 5507.	2.4	5
96	Rh(III)â€Catalysed Switchable and Chemoselective Synthesis of Difluorinated Pyrazolo[1,2â€∢i>a⟨/i>]indazolone and Indole Frameworks. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	5
97	Rh(<scp>iii</scp>)-Catalysed cascade Câ€"H imidization/cyclization of <i>N</i> -methoxybenzamides with isoxazolones for the assembly of dihydroquinazolin-4(1 <i>H</i>)-one derivatives. Organic Chemistry Frontiers, 2022, 9, 1904-1910.	4.5	4
98	Site-selective rhodium carbene transfer of 2 hydroxy- $\hat{1}^2$ -nitrostyrenes with diazo compounds En route to 2-alkylated benzofurans. Organic Chemistry Frontiers, 2022, 9, 3268-3273.	4.5	4
99	Specific assembly of dihydrobenzofuran frameworks <i>via</i> Rh(<scp>iii</scp>)-catalysed C–H coupling of <i>N</i> -phenoxyacetamides with 2-alkenylphenols. New Journal of Chemistry, 2022, 46, 5705-5711.	2.8	3
100	A novel 3-acyl isoquinolin-1(2H)-one induces G2 phase arrest, apoptosis and GSDME-dependent pyroptosis in breast cancer. PLoS ONE, 2022, 17, e0268060.	2.5	3
101	Cascade Reductive Rearrangement for the Stereoselective Synthesis of Multifunctional Piperidinones: A Combined Experimental and Computational Study. ChemistrySelect, 2020, 5, 2332-2336.	1.5	0
102	Hexafluoroisopropanol (HFIP)-prompted rearrangement of N-phenoxysulfonamides for the direct assembly of ortho-sulfonamide phenols: A combined experimental and computational study. Tetrahedron Letters, 2022, 89, 153601.	1.4	0