List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406803/publications.pdf Version: 2024-02-01

MVI CHEW

#	Article	lF	CITATIONS
1	Façade inspection for falling objects from tall buildings in Singapore. International Journal of Building Pathology and Adaptation, 2023, 41, 162-183.	0.7	9
2	A review of thermal properties of timber and char at elevated temperatures. Indoor and Built Environment, 2023, 32, 9-24.	1.5	4
3	Design for maintainability tool for nano-façade coating applications on high-rise facades in the tropics. Built Environment Project and Asset Management, 2022, 12, 70-95.	0.9	1
4	A Review of Infrared Thermography for Delamination Detection on Infrastructures and Buildings. Sensors, 2022, 22, 423.	2.1	39
5	Enhancing Interpretability of Data-Driven Fault Detection and Diagnosis Methodology with Maintainability Rules in Smart Building Management. Journal of Sensors, 2022, 2022, 1-48.	0.6	19
6	Design for Maintainability of Basements and Wet Areas. Buildings, 2021, 11, 75.	1.4	5
7	Green maintainability assessment of building-integrated photovoltaic (BIPV) applications: lessons learnt. International Journal of Building Pathology and Adaptation, 2021, ahead-of-print, .	0.7	4
8	Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling. Renewable Energy, 2021, 179, 1940-1954.	4.3	15
9	Development of a design-for-maintainability assessment of building systems in the tropics. Building and Environment, 2020, 184, 107245.	3.0	11
10	Evaluating the Roadmap of 5G Technology Implementation for Smart Building and Facilities Management in Singapore. Sustainability, 2020, 12, 10259.	1.6	25
11	A study on the effectiveness of biological growth resistant coatings on external building fa§ade systems in the tropics. Journal of Building Engineering, 2020, 31, 101377.	1.6	2
12	Green maintainability performance indicators for highly sustainable and maintainable buildings. Building and Environment, 2019, 163, 106315.	3.0	28
13	Green maintainability assessment of high-rise vertical greenery systems. Facilities, 2019, 37, 1008-1047.	0.8	16
14	Design for maintainability of high-rise vertical green facades. Building Research and Information, 2019, 47, 453-467.	2.0	26
15	An investigation of superhydrophobic self-cleaning applications on external building façade systems in the tropics. Journal of Building Engineering, 2018, 17, 167-173.	1.6	10
16	An assessment of maintainability of elevator system to improve facilities management knowledge-base. IOP Conference Series: Earth and Environmental Science, 2018, 117, 012025.	0.2	5
17	Merging building maintainability and sustainability assessment: A multicriteria decision making approach. IOP Conference Series: Earth and Environmental Science, 2018, 117, 012029.	0.2	3
18	Developing a research framework for the green maintainability of buildings. Facilities, 2017, 35, 39-63.	0.8	31

#	Article	IF	CITATIONS
19	An experimental and numerical study on fire behaviors of charring materials frequently used in buildings. Energy and Buildings, 2017, 138, 140-153.	3.1	15
20	Green maintainability design criteria for nanostructured titanium dioxide (TiO ₂) façade coatings. International Journal of Building Pathology and Adaptation, 2017, 35, 139-158.	0.7	12
21	The future adaptivity of nineteenth century heritage buildings. International Journal of Building Pathology and Adaptation, 2017, 35, 332-347.	0.7	24
22	Governance of heritage buildings: Australian regulatory barriers to adaptive reuse. Building Research and Information, 2016, 44, 507-519.	2.0	68
23	Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Building and Environment, 2016, 110, 115-128.	3.0	43
24	Developing a green maintainability framework for green walls in Singapore. Structural Survey, 2016, 34, 379-406.	1.0	15
25	Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using "FiresCone― Polymers, 2015, 7, 1979-1997.	2.0	16
26	A Model to Predict Carbon Monoxide of Woods Under External Heat Flux – Part II: Validation and Application. Procedia Engineering, 2013, 62, 422-431.	1.2	1
27	Experimental study of woods under external heat flux by autoignition. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1399-1407.	2.0	38
28	Fire behaviors of polymers under autoignition conditions in a cone calorimeter. Fire Safety Journal, 2013, 61, 243-253.	1.4	64
29	A Model to Predict Carbon Monoxide of Woods under External Heat Flux – Part I: Theory. Procedia Engineering, 2013, 62, 413-421.	1.2	3
30	A review of fire processes modeling of combustible materials under external heat flux. Fuel, 2013, 106, 30-50.	3.4	45
31	Influence of moisture on autoignition of woods in cone calorimeter. Journal of Fire Sciences, 2012, 30, 158-169.	0.9	25
32	Experimental study of carbon monoxide for woods under spontaneous ignition condition. Fuel, 2012, 102, 709-715.	3.4	26
33	A review on sustainable design of renewable energy systems. Renewable and Sustainable Energy Reviews, 2012, 16, 192-207.	8.2	129
34	Generic Method of Grading Building Defects Using FMECA to Improve Maintainability Decisions. Journal of Performance of Constructed Facilities, 2011, 25, 522-533.	1.0	61
35	Multi riteria decision analysis in building maintainability using analytical hierarchy process. Construction Management and Economics, 2010, 28, 1043-1056.	1.8	43
36	Integration of durability with structural design: An optimal life cycle cost based design procedure for reinforced concrete structures. Construction and Building Materials, 2009, 23, 918-929.	3.2	29

IF # ARTICLE CITATIONS Standardizing FM knowledge acquisition when information is inadequate. Facilities, 2009, 27, 315-330. Construction Technology for Tall Buildings., 2009,,. 38 3 Experimental Study on Fire Characteristics of PC Monitorsâ€"Part I: Combustion Properties and Pyrolysis Characteristics. Journal of Applied Fire Science, 2009, 19, 23-39. Experimental Study on Fire Characteristics of PC Monitorsâ€"Part II: Full-Scale Study Under Different 40 0.0 5 Ventilation Conditions. Journal of Applied Fire Science, 2009, 19, 41-61. Building Grading Systems: A Review of the State-of-the-Art. Architectural Science Review, 2008, 51, 3-13. 1.1 Evaporation modelling for low-temperature, long-term exposure of wood under isothermal heating. 42 0.3 0 Fire Safety Science, 2008, 9, 1177-1188. Defect analysis in wet areas of buildings. Construction and Building Materials, 2005, 19, 165-173. 3.2 Contribution Analysis of Maintainability Factors For Cladding Facades. Architectural Science Review, 1.1 44 20 2005, 48, 215-227. Compensation Effects In The Non-isothermal Pyrolysis Of Wood. Fire Safety Science, 2005, 8, 1109-1120. 0.3 Factorial Method for Performance Assessment of Building Facades. Journal of Construction 46 2.0 29 Engineering and Management - ASCE, 2004, 130, 525-533. Building Maintainabilityâ€"Review of State of the Art. Journal of Architectural Engineering, 2004, 10, 0.8 66 80-87. Serviceability of Materials in the Tropics. Journal of Architectural Engineering, 2004, 10, 69-76. 48 0.8 7 A neural network approach to assessing building fa§ade maintainability in the tropics. Construction 1.8 36 Management and Economics, 2004, 22, 581-594. A technical evaluation index for curtain wall and cladding facades. Structural Survey, 2004, 22, 50 1.0 19 210-227. On-site weathering of sealants under tropical conditions. Construction and Building Materials, 2004, 3.2 18, 287-293. Retention of movement capability of polyurethane sealants in the tropics. Construction and Building 52 3.2 11 Materials, 2004, 18, 455-459. Maintainability of wet areas of nonâ€residential buildings. Structural Survey, 2004, 22, 39-52. 20 Effect of Styrene Acrylic Ester Polymer on Mortar Render Properties. Architectural Science Review, 54 1.1 5 2004, 47, 43-52.

MYL CHEW

#	Article	IF	CITATIONS
55	A multivariate approach to maintenance prediction of wet areas. Construction Management and Economics, 2004, 22, 395-407.	1.8	6
56	Artificial Neural Network Approach for Grading of Maintainability in Wet Areas of High-Rise Buildings. Architectural Science Review, 2004, 47, 27-42.	1.1	2
57	The effects of some chemical components of polyurethane sealants on their resistance against hot water. Building and Environment, 2003, 38, 1381-1384.	3.0	12
58	Facade staining arising from design features. Construction and Building Materials, 2003, 17, 181-187.	3.2	36
59	Benchmarks to minimize water leakages in basements. Structural Survey, 2003, 21, 131-145.	1.0	10
60	Factors Affecting Water-Tightness in Wet Areas of High-Rise Residential Buildings. Architectural Science Review, 2002, 45, 375-383.	1.1	14
61	Resistance of polyurethane sealants to hot water. Building Research and Information, 2002, 30, 367-371.	2.0	1
62	Enhanced resistance of polyurethane sealants against cohesive failure under prolonged combination of water and heat. Polymer Testing, 2002, 21, 187-193.	2.3	13
63	A Study of Fire in a Concealed Basement Using Computational Fluid Dynamics (CFD) Simulation. Architectural Science Review, 2001, 44, 449-460.	1.1	0
64	Curing characteristics and elastic recovery of sealants. Building and Environment, 2001, 36, 925-929.	3.0	10
65	A modified on-site water chamber tester for masonry walls. Construction and Building Materials, 2001, 15, 329-337.	3.2	11
66	Application of ATR in characterizing aging conditions of polyurethane sealants. Polymer Testing, 2000, 20, 87-92.	2.3	7
67	On-site non-destructive test for sealants. Polymer Testing, 2000, 19, 653-665.	2.3	7
68	Joint sealant for wall cladding. Polymer Testing, 2000, 19, 643-651.	2.3	11
69	Fire Hazard of Wall Linings. Architectural Science Review, 2000, 43, 113-124.	1.1	0
70	Evaluation of the Curing of High Performance Sealants. Architectural Science Review, 2000, 43, 25-30.	1.1	4
71	Factors affecting ceramic tile adhesion for external cladding. Construction and Building Materials, 1999, 13, 293-296.	3.2	53
72	A Review of the Assessment Methods for the Performance of Sealants. Architectural Science Review, 1999, 42, 35-41.	1.1	1

#	Article	IF	CITATIONS
73	Heat, Smoke and Toxicity of Ceiling and Wall Linings and Finishes. Architectural Science Review, 1999, 42, 265-270.	1.1	0
74	Adhesion of tiles for external cladding. Structural Survey, 1999, 17, 12-17.	1.0	6
75	Applicability of infrared spectroscopy for sealant degradation studies. Building and Environment, 1998, 34, 49-55.	3.0	7
76	Assessing building façades using infraâ€red thermography. Structural Survey, 1998, 16, 81-86.	1.0	35
77	Evaluation of Sealands Using Infrared Spectroscopy. Architectural Science Review, 1997, 40, 165-170.	1.1	4
78	Elastic recovery of sealants. Building and Environment, 1997, 32, 187-193.	3.0	12
79	The assessment of fire damaged concrete. Building and Environment, 1993, 28, 97-102.	3.0	31
80	Residual Compressive Strength of Heated Concrete. Architectural Science Review, 1993, 36, 49-52.	1.1	2
81	Effects of wind flow on freshly poured concrete. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 44, 2629-2630.	1.7	1
82	The study of adhesion failure of wall tiles. Building and Environment, 1992, 27, 493-499.	3.0	21