Chunsheng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1-34.	11.8	472
2	Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromolecular Bioscience, 2016, 16, 635-646.	2.1	282
3	One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polymer Chemistry, 2011, 2, 2857.	1.9	220
4	Injectable glycopolypeptide hydrogels as biomimetic scaffolds forÂcartilage tissue engineering. Biomaterials, 2015, 51, 238-249.	5.7	217
5	Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chemical Communications, 2014, 50, 11274-11290.	2.2	162
6	Facile Synthesis of Glycopolypeptides by Combination of Ringâ€Opening Polymerization of an Alkyne‧ubstituted <i>N</i> arboxyanhydride and Click "Glycosylation― Macromolecular Rapid Communications, 2010, 31, 991-997.	2.0	146
7	Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer, 2009, 50, 4308-4316.	1.8	142
8	Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2013, 1, 69-81.	2.9	141
9	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry, 2011, 21, 11383.	6.7	138
10	Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials, 2015, 54, 72-86.	5.7	136
11	Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. Journal of Materials Chemistry, 2012, 22, 14168.	6.7	132
12	A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. Biomaterials, 2018, 178, 706-719.	5.7	130
13	Injectable Selfâ€Healing Hydrogel Wound Dressing with Cysteineâ€Specific Onâ€Demand Dissolution Property Based on Tandem Dynamic Covalent Bonds. Advanced Functional Materials, 2021, 31, 2011230.	7.8	130
14	pH- and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. Journal of Materials Chemistry B, 2013, 1, 5578.	2.9	127
15	Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer, 2013, 54, 1786-1793.	1.8	126
16	Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter, 2013, 9, 2224.	1.2	122
17	Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34, 10338-10347.	5.7	109
18	Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand―drug delivery. Journal of Controlled Release. 2013. 172. 444-455.	4.8	106

#	Article	IF	CITATIONS
19	Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polymer Chemistry, 2015, 6, 738-747.	1.9	104
20	A Multistage Cooperative Nanoplatform Enables Intracellular Coâ€Delivery of Proteins and Chemotherapeutics for Cancer Therapy. Advanced Materials, 2020, 32, e2000013.	11.1	104
21	From Antimicrobial Peptides to Antimicrobial Poly(αâ€amino acid)s. Advanced Healthcare Materials, 2018, 7, e1800354.	3.9	102
22	Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules, 2012, 13, 2053-2059.	2.6	97
23	Kinetics and Mechanism of 2-Ethoxy-2-oxo-1,3,2-dioxaphospholane Polymerization Initiated by Stannous Octoate. Macromolecules, 2006, 39, 6825-6831.	2.2	96
24	Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. Journal of Materials Chemistry, 2012, 22, 12319.	6.7	95
25	Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chemical Communications, 2016, 52, 7633-7652.	2.2	94
26	Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. Journal of Controlled Release, 2013, 169, 193-203.	4.8	89
27	Intracellular pH-sensitive supramolecular amphiphiles based on host–guest recognition between benzimidazole and β-cyclodextrin as potential drug delivery vehicles. Polymer Chemistry, 2013, 4, 3265.	1.9	89
28	Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polymer Chemistry, 2011, 2, 2627.	1.9	85
29	Synthesis and Micellization of Amphiphilic Brushâ^'Coil Block Copolymer Based on Poly(ε-caprolactone) and PEGylated Polyphosphoester. Biomacromolecules, 2006, 7, 1898-1903.	2.6	80
30	Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Applied Materials & Interfaces, 2014, 6, 21202-21214.	4.0	77
31	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polymer Chemistry, 2015, 6, 397-405.	1.9	75
32	Poly(<scp>L</scp> â€glutamic acid) grafted with oligo(2â€(2â€(2â€methoxyethoxy)ethoxy)ethyl methacrylate): Thermal phase transition, secondary structure, and selfâ€assembly. Journal of Polymer Science Part A, 2011, 49, 2665-2676.	2.5	72
33	One-Step "Click Chemistry―Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy. ACS Applied Materials & Interfaces, 2016, 8, 10673-10682.	4.0	70
34	Highly Efficient "Grafting From―an αâ€Helical Polypeptide Backbone by Atom Transfer Radical Polymerization. Macromolecular Bioscience, 2011, 11, 192-198.	2.1	69
35	Ugi Reaction of Natural Amino Acids: A General Route toward Facile Synthesis of Polypeptoids for Bioapplications. ACS Macro Letters, 2016, 5, 1049-1054.	2.3	69
36	Thermosensitive Polypeptide Hydrogels as a Platform for ROSâ€Triggered Cargo Release with Innate Cytoprotective Ability under Oxidative Stress. Advanced Healthcare Materials, 2016, 5, 1979-1990.	3.9	68

#	Article	IF	CITATIONS
37	Thermo-responsive "hairy-rod―polypeptides for smart antitumor drug delivery. Polymer Chemistry, 2013, 4, 3345.	1.9	66
38	Antineoplastic Drugâ€Free Anticancer Strategy Enabled by Hostâ€Defenseâ€Peptidesâ€Mimicking Synthetic Polypeptides. Advanced Materials, 2020, 32, e2001108.	11.1	64
39	Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomaterialia, 2013, 9, 6535-6543.	4.1	63
40	Coâ€delivery of 10â€Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy. Macromolecular Bioscience, 2013, 13, 584-594.	2.1	63
41	Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules, 2013, 14, 468-475.	2.6	61
42	Synthesis of Amphiphilic Alternating Polyesters with Oligo(ethylene glycol) Side Chains and Potential Use for Sustained Release Drug Delivery. Biomacromolecules, 2011, 12, 2466-2474.	2.6	60
43	Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology, 2011, 22, 494012.	1.3	60
44	PEGylated Poly(α-lipoic acid) Loaded with Doxorubicin as a pH and Reduction Dual Responsive Nanomedicine for Breast Cancer Therapy. Biomacromolecules, 2018, 19, 4492-4503.	2.6	58
45	Acid-labile boronate-bridged dextran–bortezomib conjugate with up-regulated hypoxic tumor suppression. Chemical Communications, 2015, 51, 6812-6815.	2.2	57
46	Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion. Biomacromolecules, 2017, 18, 1411-1418.	2.6	57
47	Redox-Sensitive Shell-Crosslinked Polypeptide <i>-block-</i> Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery. Macromolecular Bioscience, 2013, 13, 1249-1258.	2.1	56
48	Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polymer Chemistry, 2014, 5, 2801-2808.	1.9	53
49	Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polymer Chemistry, 2015, 6, 3807-3815.	1.9	52
50	Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. Polymer Chemistry, 2013, 4, 3851.	1.9	51
51	New chemosynthetic route to linear ε-poly-lysine. Chemical Science, 2015, 6, 6385-6391.	3.7	49
52	Synthesis of a phenylboronic ester-linked PEG-lipid conjugate for ROS-responsive drug delivery. Polymer Chemistry, 2017, 8, 6209-6216.	1.9	48
53	New bio-renewable polyester with rich side amino groups from <scp>l</scp> -lysine via controlled ring-opening polymerization. Polymer Chemistry, 2014, 5, 6495-6502.	1.9	46
54	<p>Selenium-Doped Carbon Quantum Dots Efficiently Ameliorate Secondary Spinal Cord Injury via Scavenging Reactive Oxygen Species</p> . International Journal of Nanomedicine, 2020, Volume 15, 10113-10125.	3.3	46

#	Article	IF	CITATIONS
55	Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery. Journal of Colloid and Interface Science, 2017, 496, 201-210.	5.0	43
56	Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomaterials Science, 2015, 3, 988-1001.	2.6	42
57	An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. Journal of Controlled Release, 2021, 335, 359-368.	4.8	42
58	Efficient recovery of precious metal based on Au–S bond and electrostatic interaction. Green Chemistry, 2014, 16, 4875-4878.	4.6	41
59	Stimuli-responsive polypeptides for controlled drug delivery. Chemical Communications, 2021, 57, 9489-9503.	2.2	39
60	Polypeptides–Drug Conjugates for Anticancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001974.	3.9	39
61	Hypoxia-Responsive Polypeptide Nanoparticles Loaded with Doxorubicin for Breast Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 2167-2174.	2.6	38
62	Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angewandte Chemie - International Edition, 2021, 60, 9274-9278.	7.2	36
63	GSH-triggered release of sulfur dioxide gas to regulate redox balance for enhanced photodynamic therapy. Chemical Communications, 2020, 56, 5645-5648.	2.2	34
64	Synthesis of amphiphilic block copolymers bearing stable nitroxyl radicals. Journal of Polymer Science Part A, 2010, 48, 5404-5410.	2.5	33
65	pH and dual redox responsive nanogel based on poly(l -glutamic acid) as potential intracellular drug carrier. Journal of Controlled Release, 2011, 152, e11-e13.	4.8	33
66	Cationic Dendron-Bearing Lipids: Investigating Structure–Activity Relationships for Small Interfering RNA Delivery. Biomacromolecules, 2013, 14, 4289-4300.	2.6	32
67	Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Materials Letters, 2012, 73, 17-20.	1.3	30
68	pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers. Macromolecular Research, 2012, 20, 292-301.	1.0	29
69	Synthesis and characterization of biodegradable pH-sensitive poly(acrylic acid) hydrogels crosslinked by 2-hydroxyethyl methacrylate modified poly(L-glutamic acid). Materials Letters, 2012, 77, 74-77.	1.3	29
70	Photo cross-linked biodegradable hydrogels for enhanced vancomycin loading and sustained release. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1697-1705.	2.0	29
71	pHâ€Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Advanced Healthcare Materials, 2015, 4, 844-855	3.9	29
72	A sulfur dioxide polymer prodrug showing combined effect with doxorubicin in combating subcutaneous and metastatic melanoma. Bioactive Materials, 2021, 6, 1365-1374.	8.6	29

#	Article	IF	CITATIONS
73	A Twoâ€Inâ€One Nanoprodrug for Photoacoustic Imagingâ€Guided Enhanced Sonodynamic Therapy. Small, 2022, 18, .	5.2	27
74	Synthesis of temperature and pH-responsive crosslinked micelles from polypeptide-based graft copolymer. Journal of Colloid and Interface Science, 2011, 359, 436-442.	5.0	26
75	Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Science China Chemistry, 2014, 57, 624-632.	4.2	26
76	Intratumoral delivery of M-CSF by calcium crosslinked polymer micelles enhances cancer immunotherapy. Biomaterials Science, 2019, 7, 2769-2776.	2.6	26
77	Facile synthesis of thermo- and pH-responsive biodegradable microgels. Colloid and Polymer Science, 2011, 289, 447-451.	1.0	25
78	Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. Journal of Polymer Science Part A, 2014, 52, 671-679.	2.5	24
79	2-Phenyl-3-(<i>p</i> -aminophenyl) Acrylonitrile: A Reactive Matrix for Sensitive and Selective Analysis of Glycans by MALDI-MS. Analytical Chemistry, 2019, 91, 8801-8807.	3.2	24
80	pH-responsive hydrogels based on the self-assembly of short polypeptides for controlled release of peptide and protein drugs. Journal of Polymer Research, 2019, 26, 1.	1.2	24
81	Reactive oxide species-scavenging lipid-polymer nanoparticles for neuroprotection after spinal cord injury. Applied Materials Today, 2021, 24, 101109.	2.3	24
82	Facile construction of functional biosurface via SI-ATRP and "click glycosylation― Colloids and Surfaces B: Biointerfaces, 2012, 93, 188-194.	2.5	23
83	Enhancing the Stability of Hydrogels by Doubling the Schiff Base Linkages. Macromolecular Chemistry and Physics, 2019, 220, 1800484.	1.1	23
84	Synthesis of polypeptide bearing 1,4-dithiane pendants for ROS-responsive drug release. Chinese Chemical Letters, 2020, 31, 1129-1132.	4.8	22
85	Dextran sulfate-triamcinolone acetonide conjugate nanoparticles for targeted treatment of osteoarthritis. International Journal of Biological Macromolecules, 2020, 158, 1082-1089.	3.6	22
86	Nanomedicine-Based Therapeutics to Combat Acute Lung Injury. International Journal of Nanomedicine, 2021, Volume 16, 2247-2269.	3.3	22
87	A comparative study of linear, Y-shaped and linear-dendritic methoxy poly(ethylene) Tj ETQq1 1 0.784314 rgBT / in vitro and in vivo. Acta Biomaterialia, 2016, 40, 243-253.	Overlock] 4.1	0 Tf 50 187 21
88	Injectable Enzymatically Crossâ€linked Hydrogels with Lightâ€Controlled Degradation Profile. Macromolecular Rapid Communications, 2018, 39, e1800272.	2.0	21
89	Organocatalyzed Ring-Opening Polymerization of Cyclic Lysine Derivative: Sustainable Access to Cationic Poly(ε-lysine) Mimics. Macromolecules, 2021, 54, 2226-2231.	2.2	21
90	Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. Polymer Chemistry, 2017, 8, 7017-7024.	1.9	20

#	Article	IF	CITATIONS
91	Glutathione-triggered dual release of doxorubicin and camptothecin for highly efficient synergistic anticancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 169, 273-279.	2.5	20
92	Injectable electroactive hydrogels based on Pluronic® F127 and tetraaniline copolymer. European Polymer Journal, 2017, 88, 67-74.	2.6	20
93	Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. Polymer, 2017, 110, 235-241.	1.8	19
94	DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 704-710.	1.2	19
95	A PEGylated alternating copolymer with oxidation-sensitive phenylboronic ester pendants for anticancer drug delivery. Biomaterials Science, 2019, 7, 3898-3905.	2.6	19
96	Enhanced nanoparticle accumulation by tumor-acidity-activatable release of sildenafil to induce vasodilation. Biomaterials Science, 2020, 8, 3052-3062.	2.6	19
97	Injectable In Situ Forming Double-Network Hydrogel To Enhance Transplanted Cell Viability and Retention. Chemistry of Materials, 2021, 33, 5885-5895.	3.2	19
98	Photoâ€crossâ€linked biodegradable thermo―and pHâ€responsive hydrogels for controlled drug release. Journal of Applied Polymer Science, 2012, 123, 2923-2932.	1.3	18
99	(E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 709-718.	1.2	18
100	Synthesis of Y-Shaped OEGylated Poly(amino acid)s: The Impact of OEG Architecture. Biomacromolecules, 2019, 20, 1655-1666.	2.6	18
101	A PEGylated alternating copolymeric prodrug of sulfur dioxide with glutathione responsiveness for Irinotecan delivery. Journal of Materials Chemistry B, 2021, 9, 187-194.	2.9	18
102	Acid-responsive dextran-based therapeutic nanoplatforms for photodynamic-chemotherapy against multidrug resistance. International Journal of Biological Macromolecules, 2020, 155, 233-240.	3.6	17
103	Recent developments in intelligent biomedical polymers. Science in China Series B: Chemistry, 2009, 52, 117-130.	0.8	16
104	Multi-armed poly(aspartate-g-OEI) copolymers as versatile carriers of pDNA/siRNA. Acta Biomaterialia, 2013, 9, 6943-6952.	4.1	16
105	A reduction-sensitive thermo-responsive polymer: Synthesis, characterization, and application in controlled drug release. European Polymer Journal, 2018, 101, 183-189.	2.6	16
106	2,2′-Dithiodisuccinic acid-stabilized polyion complex micelles for pH and reduction dual-responsive drug delivery. Journal of Colloid and Interface Science, 2018, 522, 74-81.	5.0	16
107	An efficient pH sensitive oral insulin delivery system enhanced by deoxycholic acid. Journal of Controlled Release, 2011, 152, e184-e186.	4.8	15
108	A Multifunctional Polypeptide via Ugi Reaction for Compact and Biocompatible Quantum Dots with Efficient Bioconjugation. Bioconjugate Chemistry, 2018, 29, 1335-1343.	1.8	15

#	Article	IF	CITATIONS
109	A dual-mode reactive matrix for sensitive and quantitative analysis of carbohydrates by MALDI-TOF MS. Talanta, 2021, 235, 122792.	2.9	15
110	Rapid fluorescence imaging of spinal cord following epidural administration of a nerve-highlighting fluorophore. Theranostics, 2017, 7, 1863-1874.	4.6	14
111	<p>Celastrol Self-Stabilized Nanoparticles for Effective Treatment of Melanoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 1205-1214.	3.3	14
112	Low-Molecular-Weight Polylysines with Excellent Antibacterial Properties and Low Hemolysis. ACS Biomaterials Science and Engineering, 2022, 8, 903-911.	2.6	14
113	ε-Methacryloyl- <scp>l</scp> -lysine based polypeptides and their thiol–ene click functionalization. Polymer Chemistry, 2015, 6, 1758-1767.	1.9	13
114	Multidentate Comb-Shaped Polypeptides Bearing Trithiocarbonate Functionality: Synthesis and Application for Water-Soluble Quantum Dots. Biomacromolecules, 2017, 18, 924-930.	2.6	13
115	Venetoclax nanomedicine alleviates acute lung injury <i>via</i> increasing neutrophil apoptosis. Biomaterials Science, 2021, 9, 4746-4754.	2.6	13
116	Poly(<i>L</i> -glutamic acid) Microsphere: Preparation and Application in Oral Drug Controlled Release. Acta Chimica Sinica, 2015, 73, 60.	0.5	13
117	Synthesis of PEGylated alternating copolymer bearing thioether pendants for oxidation responsive drug delivery. European Polymer Journal, 2018, 107, 308-314.	2.6	12
118	Construction of carrier-free porphyrin-based drug self-framed delivery system to reverse multidrug resistance through photodynamic-chemotherapy. Dyes and Pigments, 2020, 177, 107922.	2.0	12
119	Constructing Thermally Reversible Dynamic Hydrogels via Catalysis-Free Knoevenagel Condensation. ACS Macro Letters, 2020, 9, 830-835.	2.3	12
120	Cationic amphiphilic dendrons with effective antibacterial performance. Journal of Materials Chemistry B, 2022, 10, 456-467.	2.9	12
121	Minocycline-Loaded Poly(α-Lipoic Acid)–Methylprednisolone Prodrug Nanoparticles for the Combined Anti-Inflammatory Treatment of Spinal Cord Injury. International Journal of Nanomedicine, 2022, Volume 17, 91-104.	3.3	11
122	Thermosensitive polyion complex micelles prepared by self-assembly of two oppositely charged diblock copolymers. Chinese Journal of Polymer Science (English Edition), 2013, 31, 318-324.	2.0	10
123	A Surface Pattern on MALDI Steel Plate for One-Step In-Situ Self-Desalting and Enrichment of Peptides/Proteins. Journal of the American Society for Mass Spectrometry, 2017, 28, 428-433.	1.2	10
124	PEGylated polylysine derived copolymers with reductionâ€responsive side chains for anticancer drug delivery. Polymer International, 2019, 68, 1817-1825.	1.6	10
125	SYNTHESIS AND SWELLING BEHAVIOR OF DEGRADABLE pH-SENSITIVE HYDROGELS COMPOSED OF POLY(L-GLUTAMIC ACID) AND POLY(ACRYLIC ACID). Acta Polymerica Sinica, 2011, 011, 883-888.	0.0	10
126	One-pot synthesis of pH and ROS dual responsive nanogels for anti-cancer drug delivery. Journal of Controlled Release, 2017, 259, e154.	4.8	9

#	Article	IF	CITATIONS
127	Quantitation of Glutathione by Quinoline-5, 8-Dione-Based Tag Strategy Using MALDI Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 625-633.	1.2	9
128	Nanoparticles Composed of PEGylated Alternating Copolymerâ€Combretastatin A4 Conjugate for Cancer Therapy. Macromolecular Bioscience, 2021, 21, e2100077.	2.1	9
129	A glutathione-responsive sulfur dioxide polymer prodrug selectively induces ferroptosis in gastric cancer therapy. Biomaterials Science, 2022, 10, 4184-4192.	2.6	9
130	Phenylboronic acid-functionalized polypeptide nanogel for glucose-responsive insulin release under physiological pH. Journal of Controlled Release, 2015, 213, e69.	4.8	8
131	Amino-functionalized poly(N-vinylcaprolactam) derived from lysine: a sustainable polymer with thermo and pH dual stimuli response. Polymer Chemistry, 2016, 7, 7101-7107.	1.9	8
132	Photosensitizerâ€Polypeptide Conjugate for Effective Elimination of <i>Candida albicans</i> Biofilm. Advanced Healthcare Materials, 2022, 11, .	3.9	7
133	A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI-TOF-MS. Talanta, 2019, 200, 236-241.	2.9	6
134	The Hostâ€Defenseâ€Peptideâ€Mimicking Synthetic Polypeptides Effectively Enhance Antitumor Immunity through Promoting Immunogenic Tumor Cell Death. Macromolecular Bioscience, 2021, 21, e2100171.	2.1	6
135	Effective Oxidation-Responsive Polyester Nanocarriers for Anti-Inflammatory Drug Delivery. International Journal of Nanomedicine, 2021, Volume 16, 5053-5064.	3.3	6
136	The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene) Tj ETQq0 0 0 rgB	[/Qverlock	10 Tf 50 382
137	A cool and high salt-tolerant ionic liquid matrix for preferential ionization of phosphopeptides by negative ion MALDI-MS. New Journal of Chemistry, 2017, 41, 12241-12249.	1.4	5
138	A high sensitive and contaminant tolerant matrix for facile detection of membrane proteins by matrix-assisted laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2018, 999, 114-122.	2.6	5
139	Rapidly quantitative analysis of Î ³ -glutamyltranspeptidase activity in the lysate and blood via a rational design of the molecular probe by matrix-assisted laser desorption ionization mass spectrometry. Talanta, 2019, 205, 120141.	2.9	5
140	Facile Synthesis of Resveratrol Nanogels with Enhanced Fluorescent Emission. Macromolecular Bioscience, 2019, 19, 1800438.	2.1	5
141	Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angewandte Chemie, 2021, 133, 9360-9364.	1.6	5
142	Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy. Journal of Controlled Release, 2015, 213, e135-e136.	4.8	4
143	PEG-based thermo-responsive poly (\hat{l}^2 -thioether ester) for ROS-triggered drug delivery. Journal of Controlled Release, 2015, 213, e22.	4.8	4
144	Highly efficient imidazolium-containing oligomers for preventing MRSA biofilm and postoperative spinal infection. European Polymer Journal, 2020, 137, 109910.	2.6	4

#	Article	IF	CITATIONS
145	Re-exploring α-Cyano-4-Hydroxycinnamic Acid as a Reactive Matrix for Selective Detection of Glutathione via MALDI-MS. Journal of the American Society for Mass Spectrometry, 2021, 32, 2837-2841.	1.2	2
146	Cationic Amphiphilic Dendrons with Anticancer Activity. ACS Biomaterials Science and Engineering, 2022, 8, 2121-2130.	2.6	2
147	Photosensitizerâ€Polypeptide Conjugate with Synergistic Antibacterial Efficacy. Macromolecular Bioscience, 2022, 22, e2200105.	2.1	2
148	Drug Delivery: pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent (Adv. Healthcare Mater. 6/2015). Advanced Healthcare Materials, 2015, 4, 786-786.	3.9	1
149	5′-(CGA) <i> _n </i> sequence-assisted pH-controlled assembly of supramolecular DNA nanostructure. Royal Society Open Science, 2018, 5, 180123.	1.1	1
150	Synthesis of PEGylated Salicylaldehyde Azine via Metal-free Click Chemistry for Cellular Imaging Applications. Chemical Research in Chinese Universities, 2019, 35, 929-936.	1.3	1
151	pH-sensitive polyion complex micelles for tunable intracellular drug delivery. Journal of Controlled Release, 2015, 213, e55.	4.8	0
152	Two-way combination chemotherapy for synergistic tumor capture. Journal of Controlled Release, 2015, 213, e113-e114.	4.8	0