Fabrizio Barberis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406633/publications.pdf

Version: 2024-02-01

687363 642732 24 517 13 23 citations h-index g-index papers 24 24 24 957 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications. Carbon, 2017, 115, 608-616.	10.3	69
2	Miniscrew design and bone characteristics: An experimental study of primary stability. American Journal of Orthodontics and Dentofacial Orthopedics, 2012, 142, 228-234.	1.7	58
3	Calcium carbonate binding mechanisms in the setting of calcium and calcium–magnesium putty-limes. Journal of Cultural Heritage, 2005, 6, 253-260.	3.3	44
4	3D Porous Gelatin/PVA Hydrogel as Meniscus Substitute Using Alginate Micro-Particles as Porogens. Polymers, 2018, 10, 380.	4.5	40
5	New in-situ synthetized hydrogel composite based on alginate and brushite as a potential pH sensitive drug delivery system. Carbohydrate Polymers, 2017, 177, 324-333.	10.2	38
6	"Green-reduced―graphene oxide induces in vitro an enhanced biomimetic mineralization of polycaprolactone electrospun meshes. Materials Science and Engineering C, 2018, 93, 1044-1053.	7.3	38
7	Effect of Framework in an Implant-Supported Full-Arch Fixed Prosthesis: 3D Finite Element Analysis. International Journal of Prosthodontics, 2015, 28, 627-630.	1.7	32
8	Biological and mechanical characterization of carbon fiber frameworks for dental implant applications. Materials Science and Engineering C, 2017, 70, 646-655.	7.3	32
9	Internal Bone Temperature Change During Guided Surgery Preparations for Dental Implants: An In Vitro Study. International Journal of Oral and Maxillofacial Implants, 2013, 28, 1464-1469.	1.4	25
10	Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surface and Coatings Technology, 2016, 294, 201-209.	4.8	24
11	Characterization of alginate-brushite in-situ hydrogel composites. Materials Science and Engineering C, 2016, 67, 502-510.	7.3	22
12	Molecular level interactions in brushite-aminoacids composites. Materials Science and Engineering C, 2017, 70, 721-727.	7.3	21
13	Orthodontic miniscrews: an experimental campaign on primary stability and bone properties. European Journal of Orthodontics, 2015, 37, 531-538.	2.4	17
14	Mechanical characterisation of multi vs. uni-directional carbon fiber frameworks for dental implant applications. Materials Science and Engineering C, 2019, 102, 186-191.	7.3	14
15	Architecture and design of a robotic mastication simulator for interactive load testing of dental implants and the mandible. Journal of Prosthetic Dentistry, 2019, 122, 389.e1-389.e8.	2.8	8
16	Mechanical Properties and Corrosion Resistance of TiAl6V4 Alloy Produced with SLM Technique and Used for Customized Mesh in Bone Augmentations. Applied Sciences (Switzerland), 2021, 11, 5622.	2.5	8
17	Evaluation of Adhesion Between Carbon Fiber Frameworks and Esthetic Veneering Materials. International Journal of Prosthodontics, 2018, 31, 453-455.	1.7	7
18	Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial. Open Dentistry Journal, 2016, 10, 251-260.	0.5	7

#	Article	IF	CITATION
19	Adsorption of paraffin vapor on oxidized molybdenum substrates at nano- and micro-scales. Journal of Colloid and Interface Science, 2007, 313, 592-599.	9.4	3
20	Letter to editor for supporting "Characterization of alginate-brushite in-situ hydrogel composites― Materials Science and Engineering C, 2017, 74, 410-412.	7.3	3
21	Immediate Implants in the Aesthetic Zone: Is Socket Shield Technique a Predictable Treatment Option? A Narrative Review. Journal of Clinical Medicine, 2021, 10, 4963.	2.4	3
22	Torque efficiency of aÂcustomized lingual appliance. Journal of Orofacial Orthopedics, 2019, 80, 304-314.	1.3	2
23	A partial equilibrium theory for liquids bonded to immobile solids. Journal of Chemical Physics, 2009, 130, 184713.	3.0	1
24	Peri-Implant Bone Damage Procured by Piezoelectric and Conventional Implant Site Preparation: An In Vitro Comparison. Applied Sciences (Switzerland), 2020, 10, 8909.	2.5	1