Bernard Marty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406626/publications.pdf Version: 2024-02-01

ΒΕΔΝΛΩΓΙ ΜΛΩΤΥ

#	Article	IF	CITATIONS
1	Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science, 2022, 375, 1011-1016.	12.6	78
2	Meteoritic noble gas constraints on the origin of terrestrial volatiles. Icarus, 2022, 381, 115020.	2.5	9
3	Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). Astrobiology, 2022, 22, S-112-S-164.	3.0	7
4	Final Report of the Mars Sample Return Science Planning Group 2 (MSPG2). Astrobiology, 2022, 22, S-5-S-26.	3.0	15
5	Rationale and Proposed Design for a Mars Sample Return (MSR) Science Program. Astrobiology, 2022, 22, S-27-S-56.	3.0	14
6	The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR). Astrobiology, 2022, 22, S-176-S-185.	3.0	5
7	Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility (SRF). Astrobiology, 2022, 22, S-217-S-237.	3.0	7
8	Scientific Value of Including an Atmospheric Sample as Part of Mars Sample Return (MSR). Astrobiology, 2022, 22, S-165-S-175.	3.0	7
9	Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility (SRF). Astrobiology, 2022, 22, S-57-S-80.	3.0	16
10	High precision noble gas measurements of hydrothermal quartz reveal variable loss rate of Xe from the Archean atmosphere. Earth and Planetary Science Letters, 2022, 588, 117577.	4.4	4
11	A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nature Astronomy, 2021, 5, 356-364.	10.1	34
12	A 4,565-My-old andesite from an extinct chondritic protoplanet. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
13	Possible discontinuous evolution of atmospheric xenon suggested by Archean barites. Chemical Geology, 2021, 581, 120405.	3.3	4
14	Time-Sensitive Aspects of Mars Sample Return (MSR) Science. Astrobiology, 2021, , .	3.0	10
15	Xenon isotopes in Archean and Proterozoic insoluble organic matter: A robust indicator of syngenecity?. Precambrian Research, 2020, 336, 105505.	2.7	5
16	Noble gas variations in ureilites and their implications for ureilite parent body formation. Geochimica Et Cosmochimica Acta, 2020, 270, 325-337.	3.9	15
17	An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 2020, 551, 116574.	4.4	38
18	The NC-CC Isotope Dichotomy: Implications for the Chemical and Isotopic Evolution of the Early Solar System. Space Science Reviews, 2020, 216, 1.	8.1	27

#	Article	IF	CITATIONS
19	Tracing the Origins of the Ice Giants Through Noble Gas Isotopic Composition. Space Science Reviews, 2020, 216, 1.	8.1	13
20	Future Missions Related to the Determination of the Elemental and Isotopic Composition of Earth, Moon and the Terrestrial Planets. Space Science Reviews, 2020, 216, 1.	8.1	8
21	Nitrogen Atmospheres of the Icy Bodies in the Solar System. Space Science Reviews, 2020, 216, 1.	8.1	11
22	Archean to Paleoproterozoic seawater halogen ratios recorded by fluid inclusions in chert and hydrothermal quartz. American Mineralogist, 2020, 105, 1317-1325.	1.9	8
23	Earth's water may have been inherited from material similar to enstatite chondrite meteorites. Science, 2020, 369, 1110-1113.	12.6	164
24	Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13997-14004.	7.1	35
25	Loss and Fractionation of Noble Gas Isotopes and Moderately Volatile Elements from Planetary Embryos and Early Venus, Earth and Mars. Space Science Reviews, 2020, 216, 1.	8.1	34
26	Perspectives on Atmospheric Evolution from Noble Gas and Nitrogen Isotopes on Earth, Mars & Venus. Space Science Reviews, 2020, 216, 1.	8.1	37
27	Is the Faint Young Sun Problem for Earth Solved?. Space Science Reviews, 2020, 216, 1.	8.1	30
28	The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko. Scientific Reports, 2020, 10, 5796.	3.3	24
29	Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen. Nature, 2020, 580, 367-371.	27.8	50
30	Novel insights into the degassing history of Earth's mantle from high precision noble gas analysis of magmatic gas. Earth and Planetary Science Letters, 2019, 525, 115766.	4.4	23
31	Potassium isotope systematics of oceanic basalts. Geochimica Et Cosmochimica Acta, 2019, 259, 144-154.	3.9	54
32	Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean. Nature, 2019, 575, 485-488.	27.8	20
33	Primordial heavy noble gases in the pristine Paris carbonaceous chondrite. Meteoritics and Planetary Science, 2019, 54, 395-414.	1.6	15
34	Coulomb explosion of multiply ionized xenon in water ice. Geochemical Journal, 2019, 53, 69-81.	1.0	2
35	Archean kerogen as a new tracer of atmospheric evolution: Implications for dating the widespread nature of early life. Science Advances, 2018, 4, eaar2091.	10.3	20
36	Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. Comptes Rendus - Geoscience, 2018, 350, 154-163.	1.2	47

#	Article	IF	CITATIONS
37	Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochimica Et Cosmochimica Acta, 2018, 232, 82-100.	3.9	81
38	Origin and significance of cosmogenic signatures in vesicles of lunar basalt 15016. Meteoritics and Planetary Science, 2018, 53, 1238-1251.	1.6	5
39	Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 2018, 155, 12-40.	1.7	69
40	A new all-metal induction furnace for noble gas extraction. Chemical Geology, 2018, 480, 86-92.	3.3	11
41	iMARS <i>Phase 2</i> . Astrobiology, 2018, 18, S-1-S-131.	3.0	18
42	High-temperature Ionization-induced Synthesis of Biologically Relevant Molecules in the Protosolar Nebula. Astrophysical Journal, 2018, 859, 142.	4.5	12
43	Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2018, 4, eaar6297.	10.3	52
44	The origin and degassing history of the Earth's atmosphere revealed by Archean xenon. Nature Communications, 2017, 8, 15455.	12.8	51
45	Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science, 2017, 356, 1069-1072.	12.6	161
46	Impact of Radiogenic Heating on the Formation Conditions of Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal Letters, 2017, 839, L4.	8.3	19
47	Processes of noble gas elemental and isotopic fractionations in plasma-produced organic solids: Cosmochemical implications. Geochimica Et Cosmochimica Acta, 2017, 217, 219-230.	3.9	13
48	Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon. Geochimica Et Cosmochimica Acta, 2017, 218, 114-131.	3.9	19
49	Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1336-1345.	4.4	44
50	New measurement of the Boltzmann constant <i>k</i> by acoustic thermometry of helium-4 gas. Metrologia, 2017, 54, 856-873.	1.2	59
51	Cometary Isotopic Measurements. , 2017, , 47-83.		0
52	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. , 2017, , 297-342.		0
53	Chondritic xenon in the Earth's mantle. Nature, 2016, 533, 82-85.	27.8	75
54	Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation. Geochimica Et Cosmochimica Acta, 2016, 182, 55-72.	3.9	26

#	Article	IF	CITATIONS
55	Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2016, 2, e1600285.	10.3	393
56	The presence of clathrates in comet 67P/Churyumov-Gerasimenko. Science Advances, 2016, 2, e1501781.	10.3	38
57	Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth and Planetary Science Letters, 2016, 441, 91-102.	4.4	143
58	A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENK Astrophysical Journal Letters, 2016, 819, L33.	.0. _{8.3}	43
59	Nitrogen isotope fractionation during terrestrial core-mantle separation. Geochemical Perspectives Letters, 2016, , 138-147.	5.0	49
60	Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2015, 1, e1500377.	10.3	87
61	Cometary Isotopic Measurements. Space Science Reviews, 2015, 197, 47-83.	8.1	112
62	A comprehensive study of noble gases and nitrogen in "Hypatiaâ€; a diamond-rich pebble from SW Egypt. Earth and Planetary Science Letters, 2015, 432, 243-253.	4.4	8
63	Evidence for an early nitrogen isotopic evolution in the solar nebula from volatile analyses of a CAI from the CV3 chondrite NWA 8616. Geochimica Et Cosmochimica Acta, 2015, 153, 183-201.	3.9	12
64	Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0276.	12.6	222
65	Nitrogen isotope variations in the Solar System. Nature Geoscience, 2015, 8, 515-522.	12.9	147
66	Synthesis of refractory organic matter in the ionized gas phase of the solar nebula. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7129-7134.	7.1	43
67	Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science, 2015, 348, 232-235.	12.6	195
68	Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature, 2015, 526, 678-681.	27.8	260
69	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. Space Science Reviews, 2015, 197, 297-342.	8.1	25
70	Indigenous nitrogen in the Moon: Constraints from coupled nitrogen–noble gas analyses of mare basalts. Earth and Planetary Science Letters, 2015, 431, 195-205.	4.4	29
71	67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science, 2015, 347, 1261952.	12.6	403
72	Scientific rationale for Saturn× ³ s in situ exploration. Planetary and Space Science, 2014, 104, 29-47.	1.7	49

#	Article	IF	CITATIONS
73	Evolution of volatile species in the earth's mantle: A view from xenology. Geochimica Et Cosmochimica Acta, 2014, 136, 229-246.	3.9	13
74	The Paris meteorite, the least altered CM chondrite so far. Geochimica Et Cosmochimica Acta, 2014, 124, 190-222.	3.9	163
75	New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus, 2014, 229, 109-120.	2.5	59
76	Coupled noble gas–hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation. Earth and Planetary Science Letters, 2014, 385, 40-48.	4.4	35
77	Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles. Earth and Planetary Science Letters, 2014, 393, 2-13.	4.4	26
78	The iodine–plutonium–xenon age of the Moon–Earth system revisited. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130260.	3.4	44
79	Effects of atmospheric entry heating on the noble gas and nitrogen content of micrometeorites. Earth and Planetary Science Letters, 2013, 377-378, 1-12.	4.4	18
80	Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochimica Et Cosmochimica Acta, 2013, 121, 15-28.	3.9	107
81	Experimental determination of the xenon isotopic fractionation during adsorption. Geophysical Research Letters, 2013, 40, 4165-4170.	4.0	19
82	Iron isotopic systematics of oceanic basalts. Geochimica Et Cosmochimica Acta, 2013, 107, 12-26.	3.9	182
83	Nitrogen Isotopic Composition and Density of the Archean Atmosphere. Science, 2013, 342, 101-104.	12.6	156
84	Trace elements in the gas emissions from the Erta Ale volcano, Afar, Ethiopia. Chemical Geology, 2013, 357, 95-116.	3.3	89
85	Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus, 2013, 222, 44-52.	2.5	99
86	Reply to comment on "Chondritic-like xenon trapped in Archean rocks: A possible signature of the ancient atmosphere―by Pujol, M., Marty, B., Burgess, R., Earth and Planetary Science Letters 308 (2011) 298–306 by Pepin, R.O Earth and Planetary Science Letters, 2013, 371-372, 296-298.	4.4	3
87	Nitrogen Isotopes and Mantle Geodynamics: The Emergence of Life and the Atmosphere-Crust-Mantle Connection. Elements, 2013, 9, 359-366.	0.5	152
88	Mechanisms of magma degassing at mid-oceanic ridges and the local volatile composition (4He–40ArâŽâ€"CO2) of the mantle by laser ablation analysis of individual MORB vesicles. Earth and Planetary Science Letters, 2013, 361, 183-194.	4.4	21
89	Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature, 2013, 498, 87-90.	27.8	103
90	Primordial Origins of Earth's Carbon. Reviews in Mineralogy and Geochemistry, 2013, 75, 149-181.	4.8	69

6

#	Δρτιςι ε	IF	CITATIONS
# 91	Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: Implications for degassing processes and oxygen fugacities of basaltic systems. Geochemistry, Geophysics, Geosystems, 2013, 14, 4076-4108.	2.5	100
92	6. Primordial Origins of Earth's Carbon. , 2013, , 149-182.		1
93	The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 2012, 313-314, 56-66.	4.4	745
94	Tissint Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of Mars. Science, 2012, 338, 785-788.	12.6	100
95	MarcoPolo-R near earth asteroid sample return mission. Experimental Astronomy, 2012, 33, 645-684.	3.7	72
96	Constraints on the flux of meteoritic and cometary water on the Moon from volatile element (N–Ar) analyses of single lunar soil grains, Luna 24 core. Icarus, 2012, 218, 220-229.	2.5	33
97	The evolution of Venus: Present state of knowledge and future exploration. Planetary and Space Science, 2012, 63-64, 15-23.	1.7	47
98	Adsorption of xenon ions onto defects in organic surfaces: Implications for the origin and the nature of organics in primitive meteorites. Geochimica Et Cosmochimica Acta, 2011, 75, 6255-6266.	3.9	34
99	Chondritic-like xenon trapped in Archean rocks: A possible signature of the ancient atmosphere. Earth and Planetary Science Letters, 2011, 308, 298-306.	4.4	96
100	A ¹⁵ N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples. Science, 2011, 332, 1533-1536.	12.6	255
101	Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneity in the early solar system. Geochimica Et Cosmochimica Acta, 2010, 74, 340-355.	3.9	94
102	Magnesium isotopic composition of the Earth and chondrites. Geochimica Et Cosmochimica Acta, 2010, 74, 4150-4166.	3.9	381
103	Chronology and shock history of the Bencubbin meteorite: A nitrogen, noble gas, and Ar–Ar investigation of silicates, metal and fluid inclusions. Geochimica Et Cosmochimica Acta, 2010, 74, 6636-6653.	3.9	17
104	Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission. Experimental Astronomy, 2009, 23, 947-976.	3.7	10
105	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
106	Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature, 2009, 459, 77-80.	27.8	129
107	Laser Ablation (193 nm), Purification and Determination of Very Low Concentrations of Solar Wind Nitrogen Implanted in Targets from the GENESIS Spacecraft. Geostandards and Geoanalytical Research, 2009, 33, 183-194.	3.1	6
108	Helium isotopic signature of modern and fossil fluids associated with the Corinth rift fault zone (Greece): Implication for fault connectivity in the lower crust. Chemical Geology, 2009, 266, 67-75.	3.3	34

#	Article	IF	CITATIONS
109	Xenon isotope constraints on the thermal evolution of the early Earth. Chemical Geology, 2009, 266, 4-9.	3.3	28
110	Nitrogen in peridotite xenoliths: Lithophile behavior and magmatic isotope fractionation. Geochimica Et Cosmochimica Acta, 2009, 73, 4843-4861.	3.9	60
111	Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochimica Et Cosmochimica Acta, 2009, 73, 6834-6846.	3.9	86
112	Leftovers from core formation. Nature Geoscience, 2008, 1, 290-291.	12.9	4
113	Helium and Neon Abundances and Compositions in Cometary Matter. Science, 2008, 319, 75-78.	12.6	56
114	Timing of East African Rift development in southern Ethiopia: Implication for mantle plume activity and evolution of topography. Geology, 2008, 36, 167.	4.4	146
115	Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures. Geochimica Et Cosmochimica Acta, 2007, 71, 655-669.	3.9	92
116	Mantle upwellings and convective instabilities revealed by seismic tomography and helium isotope geochemistry beneath eastern Africa. Geophysical Research Letters, 2007, 34, .	4.0	44
117	Noble gas signature of the Late Heavy Bombardment in the Earth's atmosphere. EEarth, 2007, 2, 43-49.	0.8	29
118	Comet 81P/Wild 2 Under a Microscope. Science, 2006, 314, 1711-1716.	12.6	848
119	Noble gases in the Martian meteorite Northwest Africa 2737: A new chassignite signature. Meteoritics and Planetary Science, 2006, 41, 739-748.	1.6	12
120	Fast chemical and isotopic exchange of nitrogen during reaction with hot molybdenum. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	13
121	Building of a Habitable Planet. , 2006, , 97-151.		1
122	Cosmogenic 3He production rates revisited from evidences of grain size dependent release of matrix-sited helium. Earth and Planetary Science Letters, 2006, 247, 222-234.	4.4	56
123	How many mantle plumes in Africa? The geochemical point of view. Chemical Geology, 2006, 226, 100-114.	3.3	189
124	Sub-lithospheric source for Quaternary alkaline Tepi shield, southwest Ethiopia. Geochemical Journal, 2006, 40, 47-56.	1.0	5
125	18. Water in the Early Earth. , 2006, , 421-450.		4
126	Water in the Early Earth. Reviews in Mineralogy and Geochemistry, 2006, 62, 421-450.	4.8	75

#	Article	IF	CITATIONS
127	Isotopic Compositions of Cometary Matter Returned by Stardust. Science, 2006, 314, 1724-1728.	12.6	343
128	3. Solar System Formation and Early Evolution: the First 100 MillionÂYears. Earth, Moon and Planets, 2006, 98, 39-95.	0.6	64
129	4. Building of a Habitable Planet. Earth, Moon and Planets, 2006, 98, 97-151.	0.6	30
130	PLANETARY SCIENCE: The Primordial Porridge. Science, 2006, 312, 706-707.	12.6	2
131	Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature, 2005, 433, 33-38.	27.8	145
132	Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges. Journal of Volcanology and Geothermal Research, 2005, 140, 205-216.	2.1	65
133	Nitrogen and noble gases in micrometeorites. Meteoritics and Planetary Science, 2005, 40, 881-894.	1.6	25
134	Petrology, geochemistry, and cosmic-ray exposure age of Iherzolitic shergottite Northwest Africa 1950. Meteoritics and Planetary Science, 2005, 40, 1175-1184.	1.6	52
135	Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks. Chemical Geology, 2005, 216, 37-58.	3.3	86
136	Interlayer trapping of noble gases in insoluble organic matter of primitive meteorites. Earth and Planetary Science Letters, 2005, 236, 569-578.	4.4	25
137	Geochemical constraints on mantle dynamics in the Hadean. Earth and Planetary Science Letters, 2005, 238, 17-30.	4.4	45
138	High3He/4He ratios in peridotite xenoliths from SW Japan revisited: Evidence for cosmogenic3He released by vacuum crushing. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	49
139	Clues from Fe Isotope Variations on the Origin of Early Archean BIFs from Greenland. Science, 2004, 306, 2077-2080.	12.6	254
140	Osmium, sulphur, and helium isotopic results from the giant Neoproterozoic epithermal Imiter silver deposit, Morocco: evidence for a mantle source. Chemical Geology, 2004, 207, 59-79.	3.3	64
141	A determination of the neon isotopic composition of the deep mantle. Earth and Planetary Science Letters, 2004, 225, 77-88.	4.4	116
142	The cosmic molybdenum–ruthenium isotope correlation. Earth and Planetary Science Letters, 2004, 226, 465-475.	4.4	159
143	Protosolar Carbon Isotopic Composition: Implications for the Origin of Meteoritic Organics. Astrophysical Journal, 2004, 600, 480-484.	4.5	52
144	Nitrogen Isotopic Analyses at the Sub-Picomole Level Using an Ultralow Blank Laser Extraction Technique. , 2004, , 361-374.		10

#	Article	IF	CITATIONS
145	Title is missing!. Space Science Reviews, 2003, 106, 175-196.	8.1	35
146	Geochemical evidence for efficient aquifer isolation over geological timeframes. Nature, 2003, 425, 55-58.	27.8	63
147	Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geochimica Et Cosmochimica Acta, 2003, 67, 3773-3783.	3.9	68
148	Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity. Geochimica Et Cosmochimica Acta, 2003, 67, 4123-4135.	3.9	153
149	The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present. Earth and Planetary Science Letters, 2003, 206, 397-410.	4.4	201
150	Volatiles (nitrogen, noble gases) in recently discovered SNC meteorites, extinct radioactivities and evolution. Earth and Planetary Science Letters, 2003, 214, 27-42.	4.4	28
151	Stability of the Upper Nile drainage network (Ethiopia) deduced from (U–Th)/He thermochronometry: implications for uplift and erosion of the Afar plume dome. Earth and Planetary Science Letters, 2003, 215, 73-88.	4.4	208
152	"Nitrogen isotopic compositions of the present mantle and the Archean biosphere― Reply to comment by Pierre Cartigny and Magali Ader. Earth and Planetary Science Letters, 2003, 216, 433-439.	4.4	16
153	Nitrogen Isotopes on the Moon: Archives of the Solar and Planetary Contributions to the Inner Solar System. Space Sciences Series of ISSI, 2003, , 175-196.	0.0	1
154	Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula. Astrophysical Journal, 2002, 565, 640-644.	4.5	186
155	Molybdenum Nucleosynthetic Dichotomy Revealed in Primitive Meteorites. Astrophysical Journal, 2002, 569, L139-L142.	4.5	98
156	Formation and early evolution of the atmosphere. Geological Society Special Publication, 2002, 199, 213-229.	1.3	9
157	Inference on the nature and the mass of Earth's late veneer from noble metals and gases. Journal of Geophysical Research, 2002, 107, 12-1-12-7.	3.3	52
158	Tracing Fluid Origin, Transport and Interaction in the Crust. Reviews in Mineralogy and Geochemistry, 2002, 47, 539-614.	4.8	244
159	Noble Gases and Volatile Recycling at Subduction Zones. Reviews in Mineralogy and Geochemistry, 2002, 47, 319-370.	4.8	389
160	Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochimica Et Cosmochimica Acta, 2002, 66, 1429-1448.	3.9	148
161	Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport. Geochimica Et Cosmochimica Acta, 2002, 66, 3351-3365.	3.9	43
162	Signatures of early differentiation of Mars. Earth and Planetary Science Letters, 2002, 196, 251-263.	4.4	42

#	Article	IF	CITATIONS
163	Analyses of nitrogen and argon in single lunar grains: towards a quantification of the asteroidal contribution to planetary surfaces. Earth and Planetary Science Letters, 2002, 202, 201-216.	4.4	43
164	Inference on terrestrial genesis from molybdenum isotope systematics. Geophysical Research Letters, 2002, 29, 8-1-8-3.	4.0	39
165	9. Noble Gases and Volatile Recycling at Subduction Zones. , 2002, , 319-370.		85
166	Helium trapped in historical slags: a search for temporal variation of the He isotopic composition of air. Earth and Planetary Science Letters, 2001, 194, 165-175.	4.4	13
167	The isotopic composition of solar nitrogen and the heterogeneity of the solar system. AIP Conference Proceedings, 2001, , .	0.4	0
168	CO2-Laser Extraction-Static Mass Spectrometry Analysis of Ultra-Low Concentrations of Nitrogen in Silicates. Geostandards and Geoanalytical Research, 2000, 24, 255-260.	3.1	29
169	Solar Wind Record on the Moon: Deciphering Presolar from Planetary Nitrogen. Science, 2000, 290, 1142-1145.	12.6	164
170	Heavy Nitrogen in Carbonatites of the Kola Peninsula: A Possible Signature of the Deep Mantle. Science, 1999, 286, 2488-2490.	12.6	97
171	Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analyses. Earth and Planetary Science Letters, 1999, 167, 47-60.	4.4	61
172	Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume–lithosphere interactions. Geochimica Et Cosmochimica Acta, 1999, 63, 2263-2279.	3.9	249
173	Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochimica Et Cosmochimica Acta, 1999, 63, 3619-3633.	3.9	316
174	Comparative Studies of Solar, Q-Gases and Terrestrial Noble Gases, and Implications on the Evolution of the Solar Nebula. Geochimica Et Cosmochimica Acta, 1998, 62, 301-314.	3.9	56
175	CO2 fluxes from mid-ocean ridges, arcs and plumes. Chemical Geology, 1998, 145, 233-248.	3.3	376
176	The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modelling. Chemical Geology, 1998, 147, 27-52.	3.3	150
177	Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle. Earth and Planetary Science Letters, 1998, 164, 179-192.	4.4	107
178	Nitrogen recycling in subduction zones. Geophysical Research Letters, 1998, 25, 2289-2292.	4.0	76
179	Nitrogen and argon isotopes in oceanic basalts. Earth and Planetary Science Letters, 1997, 152, 101-112.	4.4	170
180	Helium isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle contribution. Earth and Planetary Science Letters, 1996, 144, 223-237.	4.4	185

#	ARTICLE	IF	CITATIONS
181	Helium Isotopic Evidence for a Lower Mantle Component in Depleted Archean Komatiite. Science, 1996, 273, 93-95.	12.6	37
182	Nitrogen content of the mantle inferred from N2–Ar correlation in oceanic basalts. Nature, 1995, 377, 326-329.	27.8	172
183	Origin of carbon in fumarolic gas from island arcs. Chemical Geology, 1995, 119, 265-274.	3.3	526
184	Nitrogen, helium and argon in basalt: a static mass spectrometry study. Chemical Geology, 1995, 120, 183-195.	3.3	43
185	The40Ar/36Ar ratio of the undepleted mantle; A reevaluation. Geophysical Research Letters, 1995, 22, 1937-1940.	4.0	58
186	Noble gases in crude oils from the Paris Basin, France: Implications for the origin of fluids and constraints on oil-water-gas interactions. Geochimica Et Cosmochimica Acta, 1995, 59, 3389-3404.	3.9	100
187	Primitive Boron Isotope Composition of the Mantle. Science, 1995, 269, 383-386.	12.6	164
188	He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism. Earth and Planetary Science Letters, 1994, 126, 23-39.	4.4	129
189	Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt. Chemical Geology, 1993, 106, 1-7.	3.3	68
190	Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resources Research, 1993, 29, 1025-1035.	4.2	93
191	He, Ar, Sr, Nd and Pb isotopes in volcanic rocks from Afar: Evidence for a primitive mantle component and constraints on magmatic sources Geochemical Journal, 1993, 27, 219-228.	1.0	56
192	Helium isotopes in Alpine regions. Tectonophysics, 1992, 206, 71-78.	2.2	66
193	Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: Constraints on the early history of the Earth. Geochimica Et Cosmochimica Acta, 1992, 56, 1301-1316.	3.9	186
194	Continuous monitoring of distal gas emanations at Vulcano, southern Italy. Bulletin of Volcanology, 1992, 54, 147-155.	3.0	49
195	Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chemical Geology, 1991, 91, 207-225.	3.3	61
196	Volatile fluxes from volcanoes. Terra Nova, 1991, 3, 17-27.	2.1	47
197	Neon and xenon isotopes in MORB: implications for the earth-atmosphere evolution. Earth and Planetary Science Letters, 1989, 94, 45-56.	4.4	122
198	Helium isotopes and CO2 in volcanic gases of Japan. Chemical Geology, 1989, 76, 25-40.	3.3	217

#	Article	IF	CITATIONS
199	C3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth and Planetary Science Letters, 1987, 83, 16-26.	4.4	501
200	Noble gas distribution in oceanic basalt glasses. Geochimica Et Cosmochimica Acta, 1986, 50, 1093-1097.	3.9	60
201	Two noble gas components in a Mid-Atlantic Ridge basalt. Nature, 1983, 302, 238-240.	27.8	45
202	Noble gases and nitrogen in Tissint reveal the composition of the Mars atmosphere. Geochemical Perspectives Letters, 0, , 11-16.	5.0	12