
Owen T Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of distance from semi-natural habitat on fall armyworm (<i>Spodoptera frugiperda</i> , J. E.) Tj ETQq1 343-353.	1 0.784314 0.5	rgBT /Overloc 3
2	Movement of forestâ€dependent dung beetles through riparian buffers in Bornean oil palm plantations. Journal of Applied Ecology, 2022, 59, 238-250.	1.9	5
3	Localâ€scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Functional Ecology, 2022, 36, 1655-1667.	1.7	7
4	Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Frontiers in Ecology and the Environment, 2022, 20, 459-466.	1.9	9
5	Trait-mediated competition drives an ant invasion and alters functional diversity. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
6	Riparian buffers act as microclimatic refugia in oil palm landscapes. Journal of Applied Ecology, 2021, 58, 431-442.	1.9	27
7	Molecular analyses reveal consistent food web structure with elevation in rainforest <i>Drosophila</i> – parasitoid communities. Ecography, 2021, 44, 403-413.	2.1	19
8	Leech bloodâ€meal invertebrateâ€derived DNA reveals differences in Bornean mammal diversity across habitats. Molecular Ecology, 2021, 30, 3299-3312.	2.0	24
9	Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nature Ecology and Evolution, 2021, 5, 155-164.	3.4	53
10	Experimental warming influences species abundances in a Drosophila host community through direct effects on species performance rather than altered competition and parasitism. PLoS ONE, 2021, 16, e0245029.	1.1	7
11	Rewiring of interactions in a changing environment: nettleâ€feeding butterflies and their parasitoids. Oikos, 2021, 130, 624-636.	1.2	14
12	A Network Perspective on the Vectoring of Human Disease. Trends in Parasitology, 2021, 37, 391-400.	1,5	12
13	Some like it hot: Tropical ant community responses to rainforest modification and conversion are shaped by thermal tolerances. Functional Ecology, 2021, 35, 1016-1017.	1.7	0
14	Natural enemies have inconsistent impacts on the coexistence of competing species. Journal of Animal Ecology, 2021, 90, 2277-2288.	1.3	14
15	DROP: Molecular voucher database for identification of <i>Drosophila</i> parasitoids. Molecular Ecology Resources, 2021, 21, 2437-2454.	2.2	16
16	Host specificity and interaction networks of insects feeding on seeds and fruits in tropical rainforests. Oikos, 2021, 130, 1462-1476.	1.2	10
17	The response of plants, carabid beetles and birds to 30Âyears of native reforestation in the Scottish Highlands. Journal of Applied Ecology, 2021, 58, 2185-2194.	1.9	3
18	Increased mortality of tropical tree seedlings during the extreme 2015–16 El Niño. Global Change Biology, 2021, 27, 5043-5053.	4.2	15

#	Article	IF	CITATIONS
19	Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Molecular Ecology, 2021, 30, 5844-5857.	2.0	10
20	Traitâ€similarity and traitâ€hierarchy jointly determine fineâ€scale spatial associations of resident and invasive ant species. Ecography, 2021, 44, 589-601.	2.1	6
21	Selective Logging Shows No Impact on the Dietary Breadth of a Generalist Bat Species: The Fawn Leaf-Nosed Bat (Hipposideros cervinus). Frontiers in Ecology and Evolution, 2021, 9, .	1.1	0
22	Linking dung beetleâ€mediated functions to interactions in the Atlantic Forest: Sampling design matters. Biotropica, 2020, 52, 215-220.	0.8	12
23	The cryptic impacts of invasion: functional homogenization of tropical ant communities by invasive fire ants. Oikos, 2020, 129, 585-597.	1.2	30
24	On the Perils of Ignoring Evolution in Networks. Trends in Ecology and Evolution, 2020, 35, 865-866.	4.2	2
25	Shelter use interactions of invasive lionfish with commercially and ecologically important native invertebrates on Caribbean coral reefs. PLoS ONE, 2020, 15, e0236200.	1.1	8
26	Finding missing links in interaction networks. Ecology, 2020, 101, e03047.	1.5	7
27	Assessing the potential for indirect interactions between tropical tree species via shared insect seed predators. Biotropica, 2020, 52, 509-520.	0.8	1
28	The Role of Evolution in Shaping Ecological Networks. Trends in Ecology and Evolution, 2020, 35, 454-466.	4.2	54
29	A Research Agenda for Microclimate Ecology in Human-Modified Tropical Forests. Frontiers in Forests and Global Change, 2020, 2, .	1.0	33
30	Effects of Forest Fragment Area on Interactions Between Plants and Their Natural Enemies: Consequences for Plant Diversity at Multiple Spatial Scales. Frontiers in Forests and Clobal Change, 2020, 2, .	1.0	6
31	Ecology of Lepidoptera associated with bird nests in midâ€Wales, UK. Ecological Entomology, 2019, 44, 1-10.	1.1	14
32	A highly resolved food web for insect seed predators in a speciesâ€rich tropical forest. Ecology Letters, 2019, 22, 1638-1649.	3.0	32
33	Logging of rainforest and conversion to oil palm reduces bioturbator diversity but not levels of bioturbation. Applied Soil Ecology, 2019, 144, 123-133.	2.1	21
34	Movement of Moths Through Riparian Reserves Within Oil Palm Plantations. Frontiers in Forests and Global Change, 2019, 2, .	1.0	12
35	The insectâ€focused classification of fruit syndromes in tropical rain forests: An interâ€continental comparison. Biotropica, 2019, 51, 39-49.	0.8	2
36	Interspecific and intraspecific variation in diet preference in five Atlantic forest dung beetle species. Ecological Entomology, 2019, 44, 436-439.	1.1	10

#	Article	IF	CITATIONS
37	Mechanisms structuring host–parasitoid networks in a global warming context: a review. Ecological Entomology, 2019, 44, 581-592.	1.1	47
38	Insect assemblages attacking seeds and fruits in a rainforest in Thailand. Entomological Science, 2019, 22, 137-150.	0.3	4
39	Traitâ€based ecology of terrestrial arthropods. Biological Reviews, 2019, 94, 999-1022.	4.7	151
40	Complementary roles of two resilient neotropical mammalian seed dispersers. Acta Oecologica, 2018, 88, 9-18.	0.5	5
41	First detection of bee viruses in hoverfly (syrphid) pollinators. Biology Letters, 2018, 14, .	1.0	39
42	A crossâ€continental comparison of assemblages of seed―and fruitâ€feeding insects in tropical rain forests: Faunal composition and rates of attack. Journal of Biogeography, 2018, 45, 1395-1407.	1.4	12
43	Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry, 2018, 137, 253-266.	1.7	27
44	Contrasting patterns of insect herbivory and predation pressure across a tropical rainfall gradient. Biotropica, 2018, 50, 302-311.	0.8	22
45	Insect herbivory on seedlings of rainforest trees: Effects of density and distance of conspecific and heterospecific neighbors. Ecology and Evolution, 2018, 8, 12702-12711.	0.8	13
46	Extinctions of interactions: quantifying a dung beetle–mammal network. Ecosphere, 2018, 9, e02491.	1.0	21
47	Seed predation by insects across a tropical forest precipitation gradient. Ecological Entomology, 2018, 43, 813-822.	1.1	9
48	Effects of the veterinary anthelmintic moxidectin on dung beetle survival and dung removal. Entomologia Experimentalis Et Applicata, 2018, 166, 810-817.	0.7	14
49	American Asteraceae-feeding Astrotischeria species with a highly modified, three-lobed valva in the male genitalia (Lepidoptera, Tischeriidae). Zootaxa, 2018, 4469, 1-69.	0.2	7
50	Flower preferences and pollen transport networks for cavityâ€nesting solitary bees: Implications for the design of agriâ€environment schemes. Ecology and Evolution, 2018, 8, 7574-7587.	0.8	44
51	Higher predation risk for insect prey at low latitudes and elevations. Science, 2017, 356, 742-744.	6.0	353
52	Effect of dung beetle species richness and chemical perturbation on multiple ecosystem functions. Ecological Entomology, 2017, 42, 577-586.	1.1	26
53	Experimentally reducing species abundance indirectly affects food web structure and robustness. Journal of Animal Ecology, 2017, 86, 327-336.	1.3	24
54	The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued. Ecology, 2017, 98, 2626-2639.	1.5	56

#	Article	IF	CITATIONS
55	Host-plant patch qualities and presence of a likely competitor species affect the distribution and abundance of a rare British moth, Cucullia lychnitis. Journal of Insect Conservation, 2017, 21, 137-146.	0.8	0
56	Predicting the effect of habitat modification on networks of interacting species. Nature Communications, 2017, 8, 792.	5.8	31
57	Quantifying immediate and delayed effects of anthelmintic exposure on ecosystem functioning supported by a common dung beetle species. PLoS ONE, 2017, 12, e0182730.	1.1	17
58	Changes in butterfly distributions and species assemblages on a Neotropical mountain range in response to global warming and anthropogenic land use. Diversity and Distributions, 2016, 22, 1085-1098.	1.9	36
59	Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agriculture, Ecosystems and Environment, 2016, 218, 87-94.	2.5	75
60	Plantâ€soil feedbacks from 30â€year familyâ€specific soil cultures: phylogeny, soil chemistry and plant life stage. Ecology and Evolution, 2015, 5, 2333-2339.	0.8	19
61	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	3.3	454
62	The ecology and conservation of butterflies and moths. Journal of Insect Conservation, 2015, 19, 183-184.	0.8	3
63	Riparian reserves within oil palm plantations conserve logged forest leaf litter ant communities and maintain associated scavenging rates. Journal of Applied Ecology, 2015, 52, 31-40.	1.9	36
64	Testing for enemyâ€mediated densityâ€dependence in the mortality of seedlings: field experiments with five Neotropical tree species. Oikos, 2014, 123, 185-193.	1.2	33
65	Do riparian forest fragments provide ecosystem services or disservices in surrounding oil palm plantations?. Basic and Applied Ecology, 2014, 15, 693-700.	1.2	37
66	Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 2014, 506, 85-88.	13.7	548
67	Escape from parasitism by the invasive alien ladybird, <i>Harmonia axyridis</i> . Insect Conservation and Diversity, 2014, 7, 334-342.	1.4	38
68	Antagonistic interaction networks are structured independently of latitude and host guild. Ecology Letters, 2014, 17, 340-349.	3.0	128
69	Spatial ecology of host–parasitoid interactions: a threatened butterfly and its specialised parasitoid. Journal of Insect Conservation, 2014, 18, 437-445.	0.8	5
70	Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palmâ€dominated tropical landscapes?. Ecology and Evolution, 2014, 4, 1049-1060.	0.8	84
71	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	1.9	605
72	Effects of climate warming on host–parasitoid interactions. Ecological Entomology, 2013, 38, 209-218.	1.1	133

#	Article	IF	CITATIONS
73	Connecting the Green and Brown Worlds. Advances in Ecological Research, 2013, 49, 69-175.	1.4	84
74	Plantâ€nediated and nonadditive effects of two global change drivers on an insect herbivore community. Ecology, 2012, 93, 1892-1901.	1.5	64
75	Speciesâ€rich dung beetle communities buffer ecosystem services in perturbed agroâ€ecosystems. Journal of Applied Ecology, 2012, 49, 1365-1372.	1.9	88
76	Consequences of alternative and conventional endoparasite control in cattle for dung-associated invertebrates and ecosystem functioning. Agriculture, Ecosystems and Environment, 2012, 162, 36-44.	2.5	32
77	Insects on Plants: Explaining the Paradox of Low Diversity within Specialist Herbivore Guilds. American Naturalist, 2012, 179, 351-362.	1.0	47
78	Consequences of changing rainfall for fungal pathogenâ€induced mortality in tropical tree seedlings. Ecology and Evolution, 2012, 2, 1408-1413.	0.8	53
79	Host–parasitoid dynamics in a fragmented landscape: Holly trees, holly leaf miners and their parasitoids. Basic and Applied Ecology, 2012, 13, 94-105.	1.2	8
80	Using biological traits to explain ladybird distribution patterns. Journal of Biogeography, 2012, 39, 1772-1781.	1.4	31
81	Dung Beetles Reduce Clustering of Tropical Tree Seedlings. Biotropica, 2012, 44, 271-275.	0.8	39
82	Spatial ecology of multiple parasitoids of a patchily-distributed host: implications for species coexistence. Ecological Entomology, 2011, 36, 212-220.	1.1	11
83	Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biological Conservation, 2011, 144, 166-174.	1.9	147
84	Assessing conservation status and trends for the world's butterflies: the Sampled Red List Index approach. Journal of Insect Conservation, 2011, 15, 121-128.	0.8	49
85	A novel parasitoid and a declining butterfly: cause or coincidence?. Ecological Entomology, 2011, 36, 271-281.	1.1	15
86	Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3246-3255.	1.8	60
87	Influence of experimental warming and shading on host–parasitoid synchrony. Global Change Biology, 2010, 16, 102-112.	4.2	69
88	Guildâ€specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology, 2010, 79, 1193-1203.	1.3	261
89	Close relatives are bad news. Nature, 2010, 466, 698-699.	13.7	14
90	Structural dynamics and robustness of food webs. Ecology Letters, 2010, 13, 891-899.	3.0	125

#	Article	IF	CITATIONS
91	Testing the Janzenâ€Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters, 2010, 13, 1262-1269.	3.0	187
92	Community-level diversity modelling of birds and butterflies on Anjouan, Comoro Islands. Biological Conservation, 2010, 143, 1364-1374.	1.9	17
93	Structure and vertical stratification of plant galler–parasitoid food webs in two tropical forests. Ecological Entomology, 2009, 34, 310-320.	1.1	33
94	Biodiversity change and ecosystem function in tropical forests. Basic and Applied Ecology, 2009, 10, 97-102.	1.2	58
95	Rapid assessments of tropical dung beetle and butterfly assemblages: contrasting trends along a forest disturbance gradient. Insect Conservation and Diversity, 2009, 2, 194-203.	1.4	28
96	Choice of metrics for studying arthropod responses to habitat disturbance: one example from Gabon. Insect Conservation and Diversity, 2008, 1, 55-66.	1.4	38
97	Changes in Arthropod Assemblages along a Wide Gradient of Disturbance in Gabon. Conservation Biology, 2008, 22, 1552-1563.	2.4	51
98	Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. Journal of Animal Ecology, 2008, 77, 145-155.	1.3	141
99	Insect seed predators and environmental change. Journal of Applied Ecology, 2008, 45, 1593-1599.	1.9	56
100	Effects of trail gradient on leaf tissue transport and load size selection in leaf-cutter ants. Behavioral Ecology, 2008, 19, 805-809.	1.0	23
101	Response of native parasitoids to a rangeâ€expanding host. Ecological Entomology, 2008, 33, 453-463.	1.1	32
102	Escape from natural enemies during climateâ€driven range expansion: a case study. Ecological Entomology, 2008, 33, 413-421.	1.1	137
103	Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 2007, 445, 202-205.	13.7	775
104	Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. Journal of Animal Ecology, 2007, 76, 1094-1104.	1.3	251
105	Temporal variation in foraging activity and efficiency and the role of hitchhiking behaviour in the leaf-cutting ant, AttaÂcephalotes. Entomologia Experimentalis Et Applicata, 2007, 125, 125-134.	0.7	8
106	Climate change, species–area curves and the extinction crisis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 163-171.	1.8	95
107	Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 2006, 9, 569-574.	3.0	376
108	Pathogens, density dependence and the coexistence of tropical trees. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2909-2916.	1.2	145

#	Article	IF	CITATIONS
109	Insect Diversity ConservationBY MICHAEL J. SAMWAYS xi + 342 pp., 24.5 × 17.5 × 1.5 cm, ISBN 0 521 78947 paperback, GB£30.00/US\$55.00, Cambridge, UK: Cambridge University Press, 2005. Environmental Conservation, 2005, 32, 373-374.	8 0.7	0
110	Experimental evidence for apparent competition in a tropical forest food web. Nature, 2004, 428, 310-313.	13.7	242
111	Short–term studies underestimate 30-generation changes in a butterfly metapopulation. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 563-569.	1.2	53
112	Butterflies on the move. Trends in Ecology and Evolution, 2002, 17, 351-352.	4.2	7
113	The role of indirect interactions in structuring tropical insect communities. Oikos, 2002, 97, 308-311.	1.2	10
114	Structure of a diverse tropical forest insect–parasitoid community. Journal of Animal Ecology, 2002, 71, 855-873.	1.3	147
115	Effect of Experimental Selective Logging on Tropical Butterflies. Conservation Biology, 2001, 15, 389-400.	2.4	98
116	Title is missing!. , 2001, 5, 55-63.		41
117	Flight morphology in fragmented populations of a rare British butterfly, Hesperia comma. Biological Conservation, 1999, 87, 277-283.	1.9	102
118	Evolutionary consequences of habitat fragmentation in a localized butterfly. Journal of Animal Ecology, 1998, 67, 485-497.	1.3	110
119	Endemic butterflies on Grande Comore: habitat preferences and conservation priorities. Biological Conservation, 1998, 85, 113-121.	1.9	41
120	Three ways of assessing metapopulation structure in the butterfly Plebejus argus. Ecological Entomology, 1997, 22, 283-293.	1.1	109
121	Title is missing!. Journal of Insect Conservation, 1997, 1, 159-166.	0.8	36
122	Does restoring native forest restore ecosystem functioning? Evidence from a largeâ€scale reforestation project in the Scottish Highlands. Restoration Ecology, 0, , e13530.	1.4	2
123	The role of herbivorous insects and pathogens in the regeneration dynamics of Guazuma ulmifolia in Panama. Nature Conservation, 0, 32, 81-101.	0.0	6
124	Exceptional diversity of Tischeriidae (Lepidoptera) from a single tropical forest site in Belize, Central Africa. European Journal of Taxonomy, 0, 723, 33-76.	0.6	3
125	Specimen and sample metadata standards for biodiversity genomics: a proposal from the Darwin Tree of Life project. Wellcome Open Research, 0, 7, 187.	0.9	11