
Rohit Ashok Kumar Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406350/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hole-transporting materials for organic light-emitting diodes: an overview. Journal of Materials Chemistry C, 2019, 7, 7144-7158.	5.5	166
2	Approaches for Long Lifetime Organic Light Emitting Diodes. Advanced Science, 2021, 8, 2002254.	11.2	134
3	Role of Molecular Orbital Energy Levels in OLED Performance. Scientific Reports, 2020, 10, 9915.	3.3	61
4	Molecule-based monochromatic and polychromatic OLEDs with wet-process feasibility. Journal of Materials Chemistry C, 2018, 6, 11492-11518.	5.5	52
5	Room temperature discotic liquid crystalline triphenylene-pentaalkynylbenzene dyads as an emitter in blue OLEDs and their charge transfer complexes with ambipolar charge transport behaviour. Journal of Materials Chemistry C, 2019, 7, 5724-5738.	5.5	42
6	Room-Temperature Columnar Liquid Crystals as Efficient Pure Deep-Blue Emitters in Organic Light-Emitting Diodes with an External Quantum Efficiency of 4.0%. ACS Applied Materials & Interfaces, 2019, 11, 8291-8300.	8.0	41
7	Efficient solution-processed deep-blue CIE _y â~ (0.05) and pure-white CIE _{x,y} â~ (0.34,) Chemistry C, 2021, 9, 4935-4947.	[j ETQq1] 5.5	. 0.784314 33
8	Room temperature perylene based columnar liquid crystals as solid-state fluorescent emitters in solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 12485-12494.	5.5	31
9	Deepâ€Blue OLED Fabrication from Heptazine Columnar Liquid Crystal Based AIEâ€Active Skyâ€Blue Emitter. ChemistrySelect, 2018, 3, 7771-7777.	1.5	27
10	Triphenylamine-imidazole-based luminophores for deep-blue organic light-emitting diodes: experimental and theoretical investigations. Materials Advances, 2020, 1, 666-679.	5.4	27
11	Enabling a 6.5% External Quantum Efficiency Deep-Blue Organic Light-Emitting Diode with a Solution-Processable Carbazole-Based Emitter. Journal of Physical Chemistry C, 2018, 122, 24295-24303.	3.1	23
12	Synthesis of Solution-Processable Donor–Acceptor Pyranone Dyads for White Organic Light-Emitting Devices. Journal of Organic Chemistry, 2019, 84, 7674-7684.	3.2	22
13	High-Throughput Virtual Screening of Host Materials and Rational Device Engineering for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 26204-26217.	8.0	22
14	Investigation of charge-transporting layers for high-efficiency organic light-emitting diode. Journal Physics D: Applied Physics, 2018, 51, 454002.	2.8	21
15	Fluorene based amorphous hole transporting materials for solution processed organic light-emitting diodes. Organic Electronics, 2020, 79, 105633.	2.6	20
16	Highly twisted tetra-N-phenylbenzidine-phenanthroimidazole based derivatives for blue organic light emitting diodes: Experimental and theoretical investigation. Organic Electronics, 2018, 62, 419-428.	2.6	19
17	High-performing D–Ĩ€â€"A–Ĩ€â€"D benzothiadiazole-based hybrid local and charge-transfer emitters in solution-processed OLEDs. Journal of Materials Chemistry C, 2020, 8, 17009-17015.	5.5	19
18	A thermally cross-linkable hole-transporting small-molecule for efficient solution-processed organic light emitting diodes. Organic Electronics, 2019, 73, 94-101.	2.6	18

#	Article	IF	CITATIONS
19	Nanocomposite Electron-Transport Layer Incorporated Highly Efficient OLED. ACS Applied Electronic Materials, 2020, 2, 1545-1553.	4.3	17
20	Crosslinkable hole-transporting small molecule as a mixed host for efficient solution-processed red organic light emitting diodes. Thin Solid Films, 2018, 660, 956-960.	1.8	12
21	Electroluminescent Aggregation-Induced Emission-Active Discotic Liquid Crystals Based on Alkoxy Cyanostilbene-Functionalized Benzenetricarboxamide with Ambipolar Charge Transport. ACS Applied Electronic Materials, 2022, 4, 1163-1174.	4.3	10
22	Solution Process Feasible Highly Efficient Organic Light Emitting Diode with Hybrid Metal Oxide Based Hole Injection/Transport Layer. MRS Advances, 2019, 4, 1801-1809.	0.9	8
23	Aggregation-Induced Enhanced Emission-Active Zinc(II) β-Diketiminate Complexes Enabling High-Performance Solution-Processable OLEDs. Inorganic Chemistry, 2021, 60, 19128-19135.	4.0	7
24	Molecular Engineering for the Development of a Discotic Nematic Mesophase and Solid-State Emitter in Deep-Blue OLEDs. Journal of Organic Chemistry, 2021, 86, 7256-7262.	3.2	5
25	Luminescent columnar discotics as highly efficient emitters in pure deep-blue OLEDs with an external quantum efficiency of 4.7%. Soft Matter, 2022, 18, 4214-4219.	2.7	5
26	Effect of dielectric character of electron transporting materials on the performance of organic light-emitting diodes. MRS Advances, 2018, 3, 3445-3451.	0.9	4
27	An Approach for Measuring the Dielectric Strength of OLED Materials. Materials, 2018, 11, 979.	2.9	4
28	Highly-Efficient Solution-Processed Organic Light Emitting Diodes with Blend V2O5-PEDOT:PSS Hole-Injection/Hole-Transport Layer. MRS Advances, 2019, 4, 1779-1786.	0.9	4
29	Modification effect of hole injection layer on efficiency performance of wet-processed blue organic light emitting diodes. Organic Electronics, 2021, 92, 106084.	2.6	4
30	Carrier Mobility Effect of Electron Transporting Layer on OLED Performance. , 2018, , .		2
31	Pyridinyl-Carbazole Fragments Containing Host Materials for Efficient Green and Blue Phosphorescent OLEDs. Molecules, 2021, 26, 4615.	3.8	2
32	High-Efficiency Organic Light-Emitting Diodes with a Complete Cascading Carrier Injection Structure. , 2018, , .		0
33	Effect of molecular energy level of electron transport layer on recombination zone in OLED. , 2018, , .		0
34	Pâ€210: Lateâ€News Poster: Efficient Solutionâ€Processed White Organic Light Emitting Diodes Based on a Novel Carbazole Blue Fluorescent Emitter. Digest of Technical Papers SID International Symposium, 2019, 50, 1957-1960.	0.3	0
35	Pâ€213: Lateâ€News Poster: Phenanthroimidazole Based Small Molecule Functioning Both as Blue Emitter and Host for Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 1966-1969.	0.3	0